首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
The crystallization of block copolymers (BCPs) under homogeneous and heterogeneous nucleation is currently well understood revealing the strong interplay of crystallization in competition to microphase separation. This article reports investigations on synthesis and crystallization processes in weakly interacting supramolecular pseudo‐BCPs, composed of poly(ε‐caprolactone) (PCL) and poly(isobutylene) (PIB) blocks, connected by a specifically interacting hydrogen bond (thymine/2,6‐diaminotriazine). Starting from ring opening polymerization of ε‐caprolactone, the use of “click”‐chemistry enabled the introduction of thymine endgroups onto PCL polymer, thus generating the fully thymine‐substituted pure PCLs ( 1a , 1b ) as judged via NMR and MALDI analysis. Physical mixing of 1a , 1b with a bivalent, bis(2,6‐diaminotriazine)‐containing molecule ( 2 ) generated the bivalent polymers BC1 and BC2 , whereas mixing of 1a or 1b with the 2,6‐diaminotriazine‐substituted PIB ( 3 ) generated the supramolecular pseudo‐BCPs BC3 and BC4 . Thermal investigations (DSC, Avrami analysis) revealed only minor changes in the crystallization behavior of BC1 – BC4 with Avrami exponents close to three, indicative of a confluence of the growing crystals during the crystallization process. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
A series of poly(4,4′‐biphenylenealkenylene)s and copolymers were prepared by the acyclic diene metathesis (ADMET) polymerization of 4,4′‐bis(alkenylene)1,1′‐biphenyls. Unsaturated polymers thus prepared were then hydrogenated to produce the corresponding saturated polymers. All the polymers were found to be thermotropic and to form solidlike smectic phases in melt. Their liquid crystallinity (LC) was studied by differential scanning calorimetry (DSC), X‐ray diffractometry, and polarizing microscopy. We observed that one of the phenylene units of the biphenyl structure could selectively be hydrogenated at an elevated temperature. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1335–1349, 2004  相似文献   

3.
Three 2,3‐bis(5‐hexylthiophen‐2‐yl)‐6,7‐bis(octyloxy)‐5,8‐di(thiophen‐2‐yl)‐quinoxaline ( BTTQ )‐based conjugated polymers, namely, PF‐BTTQ ( P1 ), PP‐BTTQ ( P2 ), and PDCP‐BTTQ ( P3 ), were successfully synthesized for efficient polymer solar cells (PSCs) with electron‐rich units of fluorene and dialkoxybenzene and electron‐deficient unit dicyanobenzene, respectively. All the polymers exhibited good solubility in common organic solvents and good thermal stability. Their deep‐lying HOMO energy levels enabled them good stability in the air and the relatively low HOMO energy level assured a higher open circuit potential when used in PSCs. Bulk‐heterojunction solar cells were fabricated using these copolymers blended with a fullerene derivative as an acceptor. All of them exhibited promising performance, and the best device performance with power conversion efficiency up to 3.30% was achieved under one sun of AM 1.5 solar simulator illumination (100 mW/cm2). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
2,5‐Bis(dicyanomethylene)‐2,5‐dihydrofuran (TCNF) is not homopolymerizable with any initiators, but copolymerizable with styrene (St) in an alternating fashion. Reactivity of TCNF was compared with that of 2,5‐bis(dicyanomethylene)‐2,5‐dihydrothiophene (TCNT) on the basis of the terpolymerization of the TCNT‐TCNF‐St system and the rates of addition reactions of AIBN with TCNT and with TCNF. TCNF was found to be lower in reactivity than TCNT. The relative reactivity was explained with the energy difference between quinonoid structure and benzenoid one. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1285–1292, 1999  相似文献   

5.
A new mesogenic monomer was prepared from biphenyl‐3,3′,4,4′‐tetracarboxylic dianhydride and 4‐aminophenol followed by the acylation of OH groups with propionic anhydride. This diphenol propionate was polycondensed by transesterification with decane‐1,10‐dicarboxylic acid, dodecane‐1,12‐dicarboxylic acid, and eicosane‐1,20‐dicarboxylic acid or with equimolar mixtures of two dicarboxylic acids. The resulting poly(ester imide)s were characterized by elemental analyses, 1H NMR spectra, inherent viscosities, DSC measurements, optical microscopy, and X‐ray measurements with synchrotron radiation at variable temperatures. An enantiotropic smectic A phase in the molten state and a crystalline smectic E (or H) phase in the solid state were found in all cases. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3019–3027, 2000  相似文献   

6.
Poly(ε‐caprolactone) films (TONE® 787) were irradiated by electron beam in air prior to grafting in aqueous solutions of acrylamide. The grafting kinetics and molecular weight of the grafted poly(acrylamide) chains were studied with irradiation doses between 2.5 and 20 Mrad and in the Mohr's salt concentration range of 0.0025–1 wt %. The grafting rate and yield were strongly dependent on the Mohr's salt concentration. By molecular weight analysis of grafted poly(acrylamide) chains, it was shown that the molecular weight is approximately proportional to the mass of the grafted PAAm. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1643–1649, 1999  相似文献   

7.
A poly(D,L ‐lactide)–bromine macroinitiator was synthesized for use in the preparation of a novel biocompatible polymer. This amphiphilic diblock copolymer consisted of biodegradable poly(D,L ‐lactide) and 2‐methacryloyloxyethyl phosphorylcholine and was formed by atom transfer radical polymerization. Polymeric nanoparticles were prepared by a dialysis process in a select solvent. The shape and structure of the polymeric nanoparticles were determined by 1H NMR, atomic force microscopy, and ζ‐potential measurements. The results of cytotoxicity tests showed the good cytocompatibility of the lipid‐like diblock copolymer poly(2‐methacryloyloxyethyl phosphorylcholine)‐block‐poly(D,L ‐lactide). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 688–698, 2007  相似文献   

8.
A series of 6‐(benzimidazol‐2‐yl)‐N‐organylpyridine‐2‐carboxamide were synthesized and transformed into 6‐benzimidazolylpyridine‐2‐carboxylimidate as dianionic tridentate ligands. Bis(2‐(6‐methylpyridin‐2‐yl)‐benzimidazolyl)titanium dichloride ( C1 ) and titanium bis(6‐benzimidazolylpyridine‐2‐carboxylimidate) ( C2 – C8 ) were synthesized in acceptable yields. These complexes were systematically characterized by elemental and NMR analyses. Crystallographic analysis revealed the distorted octahedral geometry around titanium in both complexes C1 and C4 . Using MAO as cocatalyst, all complexes exhibited from good to high catalytic activities for ethylene polymerization. The neutral bis(6‐benzimidazolylpyridine‐2‐carboxylimidate)titanium ( C2 – C8 ) showed high catalytic activities and good stability for prolonged reaction time and elevated reaction temperature; however, C1 showed a short lifetime in catalysis as being observed at very low activity after 5 min. The elevated reaction temperature enhanced the productivity of polyethylenes with low molecular weights, whereas the reaction with higher ethylene pressure resulted in better catalytic activity and resultant polyethylenes with higher molecular weights. At higher ratio of MAO to titanium precursor, the catalytic system generated better activity with producing polyethylenes with lower molecular weights. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3411–3423, 2008  相似文献   

9.
A novel amphiphilic poly(ethylene glycol)‐block‐poly(γ‐cholesterol‐L ‐glutamate) (mPEG–PCHLG) diblock copolymer has been synthesized. The mPEG–PCHLG copolymer has good biocompatibility and low toxicity. The mPEG–PCHLG copolymers could aggregate into nanoparticles with PCHLG blocks as the hydrophobic core and PEG blocks as the hydrophilic shell through emulsion solvent evaporation method. The copolymers were characterized by nuclear magnetic resonance spectroscopy, mass spectrum, Fourier transform infrared spectroscopy, and gel permeation chromatography. The particle sizes, size distributions, and zeta potentials of nanoparticles can also be determined by dynamic light scattering and transmission electron microscopy. This work provides a new and facile approach to prepare amphiphilic block copolymer nanoparticles with controllable performances. This novel copolymer may have potential applications in drug delivery and bioimaging applications.© 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
We report a poly(ethylene glycol)‐poly(L ‐alanine)‐azobenzene‐poly(L ‐alanine)‐poly(ethylene glycol) (PEG‐PA‐Z‐PA‐PEG) as a temperature and light sensitive polymer. The poly(ethylene glycol)‐poly(L ‐alanine) diblock copolymers with a flexible‐rigid block structure were coupled by an azobenzene group that undergoes a reversible configurational change between “trans” and “cis” upon exposure to UV and vis light. The single azobenzene molecule embedded in the middle of a block copolymer with a flexible (shell)‐rigid (core) structure significantly affected molecular assembly, micelle size, polypeptide secondary structure, and sol‐to‐gel transition temperature of the polymer aqueous solution, depending on its exposure to UV or vis light. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
A set of new aromatic poly(ether amide)s containing benzimidazole groups and ethylene oxide sequences of different lengths were synthesized and characterized. The new polymers were prepared from two benzimidazole diamines, 2‐(4‐aminophenyl)‐5‐aminobenzimidazole and 2‐(3‐aminophenyl)‐5‐aminobenzimidazole, and various oligo(ethylene oxide)dibenzoyl chlorides. They exhibited good solubility in polar aprotic solvents and glass‐transition temperatures in the range of 125–300 °C (the longer the ethylene oxide spacer was, the lower the glass‐transition temperature was). The new polyamides were essentially amorphous, as observed by X‐ray diffraction measurements and confirmed by differential scanning calorimetry measurements, by means of which no melting endotherm was observed in any case. The decomposition temperatures, as revealed by thermogravimetric analysis in nitrogen, were about 400 °C for all of them, regardless of the length of the ethylene oxide content or the phenylene ring orientation (meta or para) of the diamine moiety. The number of ethylene oxide linkages per repeat unit also determined the water uptake. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1414–1423, 2006  相似文献   

12.
To investigate the effect of trifluoromethyl groups in enhancing electron affinity of aromatic oxadiazole and triazole chromophores, we prepared four new copoly(aryl ether)s ( P1 – P4 ) consisting of bis(3‐(trifluoromethyl) phenyl)‐1,3,4‐oxadiazole (ETO) or bis(3‐(trifluoromethyl)phenyl)‐4‐(4‐hexyloxyphenyl)‐4H‐1,2,4‐triazole (ETT) segments and hole‐transporting segments [2,5‐distyrylbenzene (HTB) or bis(styryl)fluorine (HTF)]. Molecular spectra (absorption and photoluminescence) and cyclic voltammetry were used to investigate their optical and electrochemical properties. The emissions of P1 – P4 are dominated by the hole‐transporting fluorophores with longer emissive wavelengths around 442–453 nm via efficient excitation energy transfer. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of P1 – P4 , estimated from electrochemical data, are ?5.15, ?5.18, ?5.30, ?5.27, ?3.39, ?3.49, ?3.36, and ?3.48 eV, respectively. The LUMO levels of ETO and ETT segments are significantly reduced to ?3.39~?3.36 eV and ?3.48~?3.49 eV, respectively, as compared with ?2.45 eV of P5 containing a 2,5‐diphenyl‐1,3,4‐oxadiazole segment. Moreover, electron and hole affinity can be enhanced simultaneously by introducing isolated hole‐ and electron‐transporting segments in the backbone. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5900–5910, 2004  相似文献   

13.
Poly(1,1‐bis(ethoxycarbonyl)‐2‐vinyl cyclopropane (ECVP)‐graft‐dimethyl siloxane) copolymers were prepared using a macromonomer approach. Poly(dimethyl siloxane) (PDMS) macromonomers were prepared by living anionic polymerization of cyclosiloxanes followed by sequential chain‐end capping with allyl chloroformate. These macromonomers were then copolymerized with ECVP. MALDI‐ToF mass spectrometry and 1H NMR spectroscopy were used to show that the macromonomers had approximately 80% of the end groups functionalized with allyl carbonate groups. Gradient polymer elution chromatography showed that high yields of the graft copolymers were obtained, along with only small fractions of the PECVP and PDMS homopolymers. Differential scanning calorimetry showed that the low glass transition temperature (Tg) of the PDMS component could be maintained in the graft copolymers. However, the Tg was a function of polymer composition and the polymers produced had Tgs that ranged from ?50 to ?120 °C. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

14.
Two series of fluorinated polyimides were prepared from 2,2′‐bis(4‐amino‐2‐trifluoromethylphenoxy)biphenyl ( 2 ) and 2,2′‐bis(4‐amino‐2‐trifluoromethylphenoxy)‐1,1′‐binaphthyl ( 4 ) with various aromatic dianhydrides via a conventional, two‐step procedure that included a ring‐opening polyaddition to give poly(amic acid)s, followed by chemical or thermal cyclodehydration. The inherent viscosities of the polyimides ranged from 0.54 to 0.73 and 0.19 to 0.36 dL/g, respectively. All the fluorinated polyimides were soluble in many polar organic solvents, such as N,N‐dimethylacetamide and N‐methylpyrrolidone, and afforded transparent and light‐colored films via solution‐casting. These polyimides showed glass‐transition temperatures in the ranges of 222–280 and 257–351 °C by DSC, softening temperatures in the range of 264–301 °C by thermomechanical analysis, and a decomposition temperature for 10% weight loss above 520 °C both in nitrogen and air atmospheres. The polyimides had low moisture absorptions of 0.23–0.58%, low dielectric constants of 2.84–3.61 at 10 kHz, and an ultraviolet–visible absorption cutoff wavelength at 351–434 nm. Copolyimides derived from the same dianhydrides with an equimolar mixture of 4,4′‐oxydianiline and diamine 2 or 4 were also prepared and characterized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2416–2431, 2004  相似文献   

15.
Free‐standing poly(5,7‐bis(2‐(3,4‐ethylenedioxy)thienyl)‐indole) (PETI) was electrochemically obtained from 5,7‐bis(2‐(3,4‐ethylenedioxy)thienyl)‐indole (ETI) prepared by Stille coupling reaction of 5,7‐dibromoindole and 3,4‐ethylenedioxythiophene. For comparison, poly(5,7‐bis(2‐thiophene)‐indole) was also electrosynthesized from 5,7‐bis(2‐thiophene)‐indole (BTI) which was prepared from the 5,7‐dibromoindole and thiophene. Characterizations of ETI and BTI were performed by cyclic voltammetry, scanning electron microscopy, 1H NMR, and 13C NMR spectroscopy. Spectroelectrochemical studies showed PETI had better electrochromic properties and showed two different colors (brown and blue‐violet) under various potentials with better maximum contrast (ΔT%) and coloration efficiency (CE). An electrochromic device (ECD) based on PETI and poly(3,4‐ethylenedioxythiophene) (PEDOT) was also constructed and characterized. This ECD had fast response time, high CE, better optical memory, and long‐term stability. These results indicated that PETI had potential applications for ECD. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2356–2364  相似文献   

16.
The photophysical and ion‐sensing properties of densely grafted conjugated polymer poly‐p‐phenylenevinylene‐g‐poly(2‐(methacryloyloxy)ethyl)trimethylammonium chloride (PPV‐g‐PMETAC) are presented herein. The grafted polymer exhibits excellent iodide‐sensing which is easily observed using fluorescence spectroscopy. The iodide detection limit for PPV‐g‐PMETAC was found to be 10 nM and was independent of temperature and pH <12. The change in fluorescence of PPV‐g‐PMETAC, upon exposure to iodide, was attributed to polymer aggregation due to changes in the morphology of the grafted PMETAC side chains, which was observed using atomic force microscopic and dynamic light scattering studies. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1997–2003  相似文献   

17.
Amphiphilic polymer conetworks consisting of hydrophilic poly[2‐(dimethylamino)ethyl methacrylate], poly(N‐isopropylacrylamide), or poly(N,N‐dimethylacrylamide) and hydrophobic polyisobutylene chains were synthesized with a novel two‐step procedure. In the first step, a methacrylate‐multifunctional polyisobutylene crosslinker was prepared by the cationic copolymerization of isobutylene with 3‐isopropenyl‐α,α‐dimethylbenzyl isocyanate. In the second step, the methacrylate‐multifunctional polyisobutylene crosslinker, with a number‐average molecular weight of 8200 and an average functionality of approximately 4 per chain, was copolymerized radically with 2‐(dimethylamino)ethyl methacrylate, N‐isopropylacrylamide, or N,N‐dimethylacrylamide into transparent amphiphilic conetworks containing 42–47 mol % hydrophilic monomer. The synthesized conetworks were characterized with solid‐state 13C NMR spectroscopy and differential scanning calorimetry. The amphiphilic nature of the conetworks was proved by swelling in both water and n‐heptane. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6378–6384, 2006  相似文献   

18.
A novel class of biomimetic glycopolymer–polypeptide triblock copolymers [poly(L ‐glutamate)–poly(2‐acryloyloxyethyllactoside)–poly(L ‐glutamate)] was synthesized by the sequential atom transfer radical polymerization of a protected lactose‐based glycomonomer and the ring‐opening polymerization of β‐benzyl‐L ‐glutamate N‐carboxyanhydride. Gel permeation chromatography and nuclear magnetic resonance analyses demonstrated that triblock copolymers with defined architectures, controlled molecular weights, and low polydispersities were successfully obtained. Fourier transform infrared spectroscopy of the triblock copolymers revealed that the α‐helix/β‐sheet ratio increased with the poly(benzyl‐L ‐glutamate) block length. Furthermore, the water‐soluble triblock copolymers self‐assembled into lactose‐installed polymeric aggregates; this was investigated with the hydrophobic dye solubilization method and ultraviolet–visible analysis. Notably, this kind of aggregate may be useful as an artificial polyvalent ligand in the investigation of carbohydrate–protein recognition and for the design of site‐specific drug‐delivery systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5754–5765, 2004  相似文献   

19.
The preparation of poly(2,6‐dimethyl‐1,4‐phenylene ether)‐b‐poly(ethylene terephthalate) block copolymer was performed by the reaction of the 2‐hydroxyethyl modified poly(2,6‐dimethyl‐1,4‐phenylene ether) (PPE‐EtOH) with poly(ethylene terephthalate) (PET) by an in situ process, during the synthesis of the polyester. The yield of the reaction of the 2‐hydroxyethyl functionalized PPE‐EtOH with PET was close to 100%. A significant proportion of the PET‐b‐PPE‐EtOH block copolymer was found to have short PET block. Nevertheless, the copolymer structured in the shape of micelles (20 nm diameter) and very small domains with 50–200 nm diameter, whereas unmodified PPE formed much larger domains (1.5 μm) containing copolymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3985–3991, 2008  相似文献   

20.
Novel poly(ethylene terephthalate) (PET) copolyesters, abbreviated PEDMBT, containing optically active (2S,3S)‐2,3‐dimethoxy‐1,4‐butanediol (DMBD) as the second comonomer were investigated. Copolymers with ethylene glycol to DMBD ratios between 95/5 and 50/50 as well as the two parent homopolymers, PET and PDMBT, were prepared by a two‐step melt polycondensation. The resulting copolymers were found to approximately have the composition of the polymerization reaction feed and a random microstructure. Polymer intrinsic viscosities varied from 0.4 to 0.6 dL g?1 with weight‐average molecular weights ranging from 16,000 to 44,000. PEDMBT copolyesters were distinguished in being much more soluble than PET and showing an increasing affinity for water with the content in dimethoxy groups. According to the asymmetric constitution of DMBD, they displayed optical activity in solution. Both melting and glass‐transition temperatures of the copolyesters were observed to steadily decrease with the content in DMBD. PEDMBTs were found to be crystalline for contents in DMBD up to 30 mol %. Both powder and fiber X‐ray diffraction revealed that the same crystalline structure is shared by PET and the crystalline copolyesters. The homopolyester PDMBT resulted in becoming a polymer with a crystallinity comparable to PET but with a significantly different crystalline structure. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3250–3262, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号