首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper was an application of our previous study on particle coagulation mechanism (Colloid Polym Sci 291: 2385‐2398, 2013), and the effect of coagulation particle of acrylic impact modifiers (ACR) on polymer blend properties was investigated. The compatibility was relevant with the properties of shell phase rather than the structure of core phase. The rubber content was found to be the main influencing factor for toughening when rubber content less than 5%. However, when it reached to 7%, the dispersion of rubber became the primary parameter to dominate the toughness. The highest impact strength of poly(vinyl chloride) (PVC) toughened by coagulation particles was 1656 J/m, nearly 56 times than pure PVC, whereas only 45 times was reached when toughening by traditional ACR prepared by seeded emulsion polymerization; moreover, the brittle–ductile transition happened in advanced of 2 phr at ACR content. Scanning electron microscopy results showed that the shear yielding of the matrix and rubber cavitation were the major toughening mechanisms. Furthermore, the high performance of blend responsible for coagulation particles was discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Core-shell structured polyacrylic(named CSSP) impact modifiers consisting of a rubbery poly(n-butyl acrylate) core and a rigid poly(methyl methacrylate) shell with a size of about 353 nm were prepared by seed emulsion polymerization. The CSSP modifiers with different core-shell weight ratios(90/10, 85/15, 80/20, 75/25, 70/30, 65/35 and 60/40) were used to modify the toughness of poly(butylene terephthalate)(PBT) by melt blending. It was found that the polymerization had a very high instantaneous conversion(> 95.7%) and overall conversion(99.7%). The morphology of the core-shell structure was confirmed by means of transmission electron microscopy. Scanning electron microscopy was used to observe the morphology of the fractured surfaces. Differential scanning calorimeter was used to study the crystallization behaviors of PBT/CSSP blends. The dynamic mechanical analyses of PBT/CSSP blends showed two merged transition peaks of PBT matrix, with the presence of CSSP core-shell structured modifier, that were responsible for the improvement of PBT toughness. The results indicated that the notch impact strength of PBT/CSSP blends with a core-shell weight ratio of 75/25 was almost 8.64 times greater than that of pure PBT, and the mechanical properties agreed well with the SEM observation.  相似文献   

3.
Combining the excellent mechanical strengths of polyamide 6 (PA6) with the low water absorption of poly(butylene terephthalate) (PBT) was supposed to be a feasible way to prepare a high comprehensive performance material. However, the poor compatibility between PA6 and PBT resulted in low‐notched impact strength of PA6/PBT blends. Poly(n‐butyl acrylate)/poly(methyl methacrylate‐co‐methacrylic acid) (PBMMA), a core‐shell structured modifier with controlled particle sizes, was prepared by seed emulsion polymerization and confirmed by Transmission electron microscope (TEM). The PBMMA particles as toughening modifier and compatilizer were employed to toughen PA6/PBT blends. The notched impact strength of the PA6/PBT blends was significantly increased and the water absorption was reduced with the addition of PBMMA particles. With 23.0 wt% modifier loading, the notched impact strength of the blends was 25.66 kJ/m2, which was 4.04 times higher than that of pure PA6/PBT. Meanwhile, the water absorption of the blends was only 1.3%, dropping 53.6% compared with pure PA6 and reducing by 26.6% than PA6/PBT. Scanning electron microscope results showed that the PBMMA particles were dispersed in the PA6/PBT blends homogeneously, and the toughening mechanism was the cavitation of rubber particles and shear yielding of the matrix. Thermo‐gravimetric analysis analysis demonstrated that the compatibility between PA6 and PBT was improved with the addition of core‐shell PBMMA particles. The core‐shell particles could be used as an effective modifier to achieve the high toughness and low water absorption for PA6/PBT blends. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
A series of methyl methacrylate‐butadiene‐styrene (MBS) core–shell impact modifiers were prepared by grafting styrene (St) and methyl methacrylate (MMA) onto polybutadiene (PB) or styrene‐butadiene rubber (SBR) seed latex in emulsion polymerization. All the MBS modifiers were designed to have the same total chemical composition, and Bd/St/MMA equaled 39/31/30, which was a prerequisite for producing transparent blends with poly(MMA)/styrene‐acrylonitrile (PMMA/SAN) matrix copolymers. Under this composition, different ways of arrangement for styrene in MBS led to the different structure of MBS modifier. The concentration of PB or SBR rubber of MBS in PMMA/SAN/MBS blends was kept at a constant value of 15 wt.%. The effects of arrangement of St in MBS on the mechanical and optical properties of PMMA/SAN/MBS blends were investigated. The results indicated that Izod impact strength of PMMMA/SAN/MBS blend with the amount of St grafted on core in MBS was higher than that of blend with the amount of St copolymerized with Bd in core of MBS, while the transparency of blend is opposite. From transmission electron microscopy, it was found that the arrangement of St in MBS influenced the dispersion of blend, which led to different toughness. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
A method of one‐stage soap‐free emulsion polymerization to synthesize narrowly dispersed core‐shell microspheres is proposed. Following this method, core‐shell microspheres of poly(styrene‐co‐4‐vinylpyridine), poly(styrene‐co‐methyl acrylic acid), and poly[styrene‐co‐2‐(acetoacetoxy)ethyl methacrylate‐co‐methyl acrylic acid] are synthesized by one‐stage soap‐free emulsion polymerization of a mixture of one or two hydrophobic monomers and a suitable hydrophilic monomer in water. The effect of the molar ratio of the hydrophobic monomer to the hydrophilic one on the size, the core thickness, and the shell thickness of the core‐shell microspheres is discussed. The molar ratio of the hydrophobic and hydrophilic monomers and the hydrophilicity of the resultant oligomers of the hydrophilic monomer are optimized to synthesize narrowly dispersed core‐shell microspheres. A possible mechanism of one‐stage soap‐free emulsion polymerization to synthesize core‐shell microspheres is suggested and coagglutination of the oligomers of the hydrophilic monomers on the hydrophobic core is considered to be the key to form core‐shell microspheres. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1192–1202, 2008  相似文献   

6.
核/壳结构聚丙烯酸酯塑料增韧剂的制备与结构控制   总被引:8,自引:1,他引:8  
核/壳结构聚丙烯酸酯塑料增韧剂的制备与结构控制张会轩戴英杨海东*冯之榴(吉林工学院化工系长春130012)(中国科学院长春应用化学研究所130022)关键词聚丙烯酸酯,增韧剂,制备,种子乳液聚合1996-08-28收稿,1997-01-06修回国家自...  相似文献   

7.
A series of acrylic impact modifiers (AIMs) with different particle sizes ranging from 55.2 to 927.0 nm were synthesized by seeded emulsion polymerization, and the effect of the particle size on the brittle–ductile transition of impact‐modified poly(vinyl chloride) (PVC) was investigated. For each AIM, a series of PVC/AIM blends with compositions of 6, 8, 10, 12, and 15 phr AIM in 100 phr PVC were prepared, and the Izod impact strengths of these blends were tested at 23 °C. For AIMs with particle sizes of 55.2, 59.8, 125.2, 243.2, and 341.1 nm, the blends fractured in the brittle mode when the concentration of AIM was lower than 10 phr, whereas the blends showed ductile fracture when the AIM concentration reached 10 phr. It was concluded that the brittle–ductile transition of the PVC/AIM blends was independent of the particle size in the range of 55.2–341.1 nm. When the particle size was greater than 341.1 nm, however, the brittle–ductile transition shifted to a higher AIM concentration with an increase in the particle size. Furthermore, the critical interparticle distance was found not to be the criterion of the brittle–ductile transition for the PVC/AIM blends. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 696–702, 2006  相似文献   

8.
Supertough poly(butylene terephthalate) (PBT)‐based blends were obtained by the melt blending of PBT with 0–30 wt % poly(ethylene‐co‐glycidyl methacrylate) (EGMA). The reaction between PBT and EGMA was detected by torque measurements. The particle size was almost constant with increasing EGMA content, and this indicated that compatibilization occurred. The minimum EGMA content for achieving supertoughness (i.e., an impact strength 16 times greater than that of PBT) was 20 wt %. The interparticle distance was the parameter controlling toughness in these PBT/EGMA blends. The dependence of the critical interparticle distance (τc) on the modulus of the dispersed phase appeared only at low τc values, and the primary dependence of τc on the ratio of the modulus of the matrix to the modulus of the rubbery dispersed phase was proposed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2236–2247, 2003  相似文献   

9.
Toughening amplification of the neat poly(vinyl chloride) (PVC) and its reinforced version containing 25 phr of the cellulose acetate (CA)‐compatibilized starch using methyl methacrylate‐butadiene‐styrene (MBS) core–shell particles was studied. The room temperature measured impact strength of the PVC showed mild increase up to 10 wt % with the addition of MBS particles. Then, the toughness enhanced discontinuously to super‐tough plateau regime. The room temperature measured impact strength of PVC containing 20 phr of MBS particles, however, was reduced by as much as 95% when it was filled with 25 phr of the CA‐compatibilized starch. In addition, the brittle–ductile transition (BDT) of the toughened PVC increased from 0 to 60 °C because of its reinforcement, even though the matrix number density of the core/shell particles remained almost constant. The decline in the impact strength and the rise in the BDT of the hybrid PVC system were attributed to the decrease in the shear deformable matrix and shear deformation propagation rate despite the increase in the process zone size. Maximum impact strength of the hybrid system at 60 °C (its BDT) increased to about 25% of the toughened PVC at its BDT (0 °C). The toughness amplification correlation of the toughened and hybrid PVC systems with their process zones fractional stress volumes under the impact load showed three regimes: quasi‐tough, transition, and super‐tough, which were superimposable on literature data regarding hybrid nylon 66 systems. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

10.
Epoxy‐functionalized polystyrene/silica core–shell composite nanoparticles were prepared by the postaddition of glycidyl methacrylate (GMA) via emulsion polymerization. The outermost shell of obtained multilayered core–shell particles was made up of poly(glycidyl methacrylate) (PGMA). A semicontinuous process involving the dropwise addition of GMA was used to avoid demulsification of the emulsion system. The amount of grafted PGMA was quantified by Fourier transform infrared spectroscopy and was altered in a wide range (1–50 wt % to styrene). The binding efficiency was usually high (ca. 90%), indicating strong adhesion between the silica core and the polymer shell. There were approximately four or five original silica beads, which formed a cluster, per composite of nanoparticles whose size was about 60–70 nm. Other main factors of polymerization conditions including the amounts of sodium dodecyl sulfonate and silica are also discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2253–2262, 2004  相似文献   

11.
The atom transfer radical polymerization (ATRP) technique using the copper halide/ N,N′,N′,N″,N″‐pentamethyldiethylenetriamine complex was applied to the graft polymerization of methyl methacrylate and methyl acrylate on the uniform polystyrene (PS) seed particles and formed novel core‐shell particles. The core was submicron crosslinked PS particles that were prepared via emulsifier‐free emulsion polymerization. The crosslinked PS particles obtained were transferred into the organic phase (tetrahydrofuran), and surface modification using the chloromethylation method was performed. Then, the modified seed PS particles were used to initiate ATRP to prepare a controlled poly(methyl methacrylate) (PMMA) and poly(methyl acrylate) (PMA) shell. The final core‐shell particles were characterized using Fourier transform infrared spectroscopy, nuclear magnetic resonance, scanning electron microscopy, thermogravimetric analysis, and elementary analysis. The grafting polymerization was conducted successfully on the surface of modified crosslinked PS particles, and the shell thickness and weight ratio (PMMA and PMA) of the particles were calculated. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 892–900, 2002; DOI 10.1002/pola.10160  相似文献   

12.
In this first of two papers, the thermal decomposition of bisphenol A bis(diphenyl phosphate)-flame retarded polycarbonate (PC) blends with different impact modifiers was studied. The impact modifiers were an acrylonitrile-butadiene-styrene (ABS), a poly(n-butyl acrylate) (PBA) rubber with a poly(methyl methacrylate) (PMMA) shell and two silicone-acrylate rubbers consisting of PBA with different amounts of polydimethylsiloxane (PDMS) and different shells (PMMA and styrene-acrylonitrile, SAN). The focus of this work was to study the impact of the acrylate and silicon-acrylate rubbers with respect to pyrolysis and flame retardancy in comparison to common ABS. Thermogravimetry (TG) was performed to investigate the pyrolysis behaviour and reaction kinetics. TG in combination with FTIR identified the pyrolysis gases. Solid residues were investigated by FTIR-ATR. PC/ABS shows two-step decomposition, with PC decomposing independently from ABS at higher temperatures. Pure acrylate rubber destabilises PC due to interactions between the rubber and PC, which leads to earlier decomposition of PC. Using silicone-acrylate rubbers led to similar results as PC/ABS with respect to pyrolysis, reaction kinetics and analysis of the solid residue; hence the exchange of ABS for the silicone-acrylate rubbers is possible.  相似文献   

13.
Model alkali‐soluble rheology modifiers were synthesized through the reversible addition–fragmentation chain transfer polymerization of methyl methacrylate, methacrylic acid, and three different associative macromonomers containing 20, 50, and 100 ethylene oxide spacer units, respectively. The synthesized polymers showed well‐controlled molar masses and narrow molar mass distributions. The rheological properties of the model alkali‐soluble rheology modifiers were measured in alkali solutions and in the presence of a well‐characterized core–shell emulsion. The steady‐shear viscosity data for the emulsion solutions, thickened with the associative rheology modifiers, were described by the Carreau model. The rheology modifiers containing the macromonomers with the longest ethylene oxide spacer units produced the highest viscosity in the latex systems but the lowest viscosity in alkali solutions. The highest viscosities in alkali solutions were obtained for the rheology modifiers containing macromonomers with 50 ethylene oxide spacer units. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2502–2512, 2004  相似文献   

14.
Polymethyl methacrylate‐based stealth and functional nanospheres, specifically designed for the reversible adsorption of oligonucleotides (ODN), were prepared by emulsion polymerization of methyl methacrylate in the presence of an ionic comonomer, namely a quaternary ammonium salt of 2‐(dimethylamino)ethyl methacrylate, and a nonionic comonomer, namely a poly(ethylene glycol) methacrylate. The nanosphere size is substantially affected by the amount of both the nonionic and ionic comonomers. By appropriately adjusting the concentrations of the ionic and nonionic comonomers, the quaternary ammonium group and PEG chain surface densities can be finely tuned. Accordingly, a great variety of core‐shell‐type nanospheres, able to bind ODN and to induce dysopsonic effect, can be obtained. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3347–3354, 2000  相似文献   

15.
The synthesis, characterization, and potential application as gene delivery systems of biodegradable dual‐responsive core–shell nanogels based on poly(2‐diethylaminoethyl) methacrylate (PDEAEMA) and poly(N‐vinylcaprolactam) (PVCL) are reported. These core–shell nanogels, having a PDEAEMA‐based core and a PVCL‐based shell, were synthesized by batch seeded emulsion polymerization. An indepth study of their swelling behavior was carried out, which presented a dual‐dependent thermo‐ and pH sensitivity. Core–shell nanogels synthesized formed complexes spontaneously through electrostatic interactions when mixing with small interfering RNA (siRNA) molecules. Moreover, the core–shell nanogel/siRNA complexes showed higher polyanion exchange resistance compared to that of the PDEAEMA‐based nanogel/siRNA complexes, indicating that the PVCL‐based shell enhanced the stability of the complexes. In vitro siRNA release profiles showed that siRNA release was controlled by the pH of the medium as well as by the crosslinking density of the PVCL‐based shell. These results indicate that dual‐responsive core–shell nanogels synthesized could be potentially useful as gene delivery systems. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3203–3217  相似文献   

16.
The key drawback of impact modifier-toughened polymer is that the improved toughness is accompanied by loss in stiffness. Surprisingly, poly (vinyl chloride) (PVC)/poly (α-methylstyrene-acrylonitrile) (α-MSAN) blend was toughened without loss in stiffness by simply combining two impact modifiers-chlorinated polyethylene (CPE) and acrylic resin (ACR). The prepared blend's impact strength was 3.0 times higher than PVC/α-MSAN/CPE blend and 18.6 times higher than pure PVC/α-MSAN blend. An impressive thermal stabilizing effect was also achieved when CPE and ACR were combined. The improved toughness could be attributed to the overlap of the stress field between different impact modifiers, which help to form the continuum percolation of stress volume under impact loading.  相似文献   

17.
Flame retardancy of bisphenol A polycarbonate (PC)/poly(butylene terephthalate) (PBT) blends was improved by the addition of resorcinol bis(diphenyl phosphate) (RDP) and poly(phenylene ether) (PPO). A PC/PBT blend at 70/30 weight ratio obtained a V‐0 rating by the addition of 10 wt% RDP and 10 wt% PPO. The combination of 5 wt% methyl methacrylate‐butadiene‐styrene tercopolymer (MBS) with 3 wt% ethylene‐butylacrylate‐glycidyl methacrylate tercopolymer (PTW) causes a remarkable increase in toughness of the PC/PBT/RDP blend while maintaining a high rigidity. A detailed investigation of the flame‐retardant action of PC/PBT/RDP and PC/PBT/RDP/PPO blends was performed using thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), TGA‐FTIR, temperature‐programmed pyrolysis/gas chromatography/mass spectrometry (TPPy/GC/MS), and scanning electron microscopy/energy dispersive spectrometer (SEM/EDS). The results demonstrate that RDP induces a higher char yield at ca. 450 °C and synchronously increases the thermal stability of the blend with PPO. The flame‐retardant role of RDP in the condensed phase was discerned from TGA, FTIR, and SEM/EDS of the residues. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Amphiphilic block copolymers of poly(acrylic acid‐b‐butyl acrylate) were prepared by reversible addition–fragmentation chain transfer polymerization in a one‐pot reaction. These copolymers were characterized by NMR, static and dynamic light scattering, tensiometry, and size exclusion chromatography. The aggregation characteristics of the copolymers corresponded to those theoretically predicted for a star micelle. In a butyl acrylate and methyl methacrylate emulsion polymerization, low amounts of these copolymers could stabilize latices with solid contents up to 50%. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 684–698, 2003  相似文献   

19.
The mechanisms by which a new nonionic alkenyl‐based surfmer (Maxemul 5011?) was involved in acrylic emulsion polymerization were investigated. No proof of homopolymerization or of chain transfer to surfmer was obtained under the conditions studied. The effect of the initiator type, feeding time of the surfmer, particle size of the seed, and surfmer concentration, on kinetics and surfmer incorporation showed that the surfmer reacted mainly by copolymerization with the monomers in the outer shell of the polymer particles. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4202–4211, 2004  相似文献   

20.
In this second of a series of two papers, the fire behaviour of halogen-free flame retarded polycarbonate (PC) blends with different impact modifiers was studied. The impact modifiers were acrylonitrile-butadiene-styrene (ABS), a poly(n-butyl acrylate) rubber (PBA) with a poly(methyl methacrylate) (PMMA) shell and two silicone-acrylate rubbers consisting of PBA with different amounts of polydimethylsiloxane (PDMS) and different shell materials (PMMA and styrene-acrylonitrile, SAN). The flame retardant was bisphenol A bis(diphenyl phosphate) (BDP). Flammability was determined by LOI and UL 94. The burning behaviour under forced flaming conditions was studied by cone calorimeter under different external irradiations and by pyrolysis combustion flow calorimeter measurements. The exchange of ABS with the pure acrylate rubber worsened flammability, while similar results were obtained in cone calorimeter measurements. The exchange of ABS with the silicone-acrylate rubbers is promising, particularly with higher amounts of PDMS. In flammability tests strongly enhanced LOI values were obtained and therefore silicone-acrylate rubbers look like promising alternatives for ABS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号