首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Polypyrrole powder and films were chemically synthesized by the reaction of AgNO3, FeCl3, Fe(NO3)3, Cu(NO3)2, or Cu(NO3)2-AlCl3 with pyrrole in an aqueous solution or a water—toluene two-phase system. Products were characterized by elemental analysis, IR, scanning electron microscopy with energy dispersive x-ray analysis (SEM with EDAX), and conductivity measurements. The polypyrrole synthesized from pyrrole with FeCl3 had a composition of C4.00H3.05N0.99Cl0.25. The pressed powder had a conductivity of 2.7 × 10?2 S/cm and the film 2.8 S/cm. All the other metal salts produced films that had the same organic backbone, morphology, and conductivity as the polymer synthesized using Fe(III) salts, regardless of the considerable differences in the reduction potentials of the metal ions. The nature of the anions of the transition metal salts had no effect on the reaction. Anions, however, were retained as the counterions of the cationic polypyrrole backbone and could be easily exchanged with other anions.  相似文献   

2.
New potassium-conducting solid electrolytes in the mixed ferrite-aluminate system K0.85Pb0.075(Fe1 − x Al x )O2 are synthesized and studied. The electrolytes exhibit high ionic conductivity in the studied temperature range of 350 to 750°C (approximately 10−2 S/cm at 400°C and approximately 10−1 S/cm at 700°C). An increase in the conductivity with increasing concentration of iron in the specimens is a general tendency. However, in a wide range of compositions (from x = 0.2 to x = 0.9), the conductivity only slightly depends on x. Possible reasons for the effect of Fe/Al ratio in the structure of solid electrolytes on their transport properties are discussed.  相似文献   

3.
New potassium-conducting solid electrolytes in the mixed gallate-ferrite systems (1 − x)Ga2O3 · xFe2O3 · 0.25TiO2 · K2O and 1.5[(1 − x)Ga2O3 · xFe2O3] · TiO2 · 2K2O are synthesized and studied. The electrolytes exhibit high ionic conductivity in the test temperature range of 300 to 750°C (above 10−2 S/cm at 300°C and above 10−1 S/cm at 700°C). An increase in the conductivity with increasing concentration of iron in the specimens is a general tendency. Possible reasons for the effect of Ga/Fe ratio in the structure of solid electrolytes on their transport properties are discussed.  相似文献   

4.
Single Li+ ion conducting polyelectrolytes (SICs), which feature covalently tethered counter-anions along their backbone, have the potential to mitigate dendrite formation by reducing concentration polarization and preventing salt depletion. However, due to their low ionic conductivity and complicated synthetic procedure, the successful validation of these claimed advantages in lithium metal (Li0) anode batteries remains limited. In this study, we fabricated a SIC electrolyte using a single-step UV polymerization approach. The resulting electrolyte exhibited a high Li+ transference number (t+) of 0.85 and demonstrated good Li+ conductivity (6.3×10−5 S/cm at room temperature), which is comparable to that of a benchmark dual ion conductor (DIC, 9.1×10−5 S/cm). Benefitting from the high transference number of SIC, it displayed a three-fold higher critical current density (2.4 mA/cm2) compared to DIC (0.8 mA/cm2) by successfully suppressing concentration polarization-induced short-circuiting. Additionally, the t+ significantly influenced the deposition behavior of Li0, with SIC yielding a uniform, compact, and mosaic-like morphology, while the low t+ DIC resulted in a porous morphology with Li0 whiskers. Using the SIC electrolyte, Li0||LiFePO4 cells exhibited stable operation for 4500 cycles with 70.5 % capacity retention at 22 °C.  相似文献   

5.
Composite solid electrolytes were synthesized from the organic salt dimethylammonium chloride (1–x)C2H8NCl–xAl2O3. Their physicochemical properties were studied. In the starting C2H8NCl salt, there is a phase transition at 39°C accompanied by an increase in conductivity by two orders of magnitude. The conductivity of the high-temperature phase is 9.3 × 10–6 S/cm at 160°C. A differential scanning calorimetry study showed that the salt in the composites spreads over the oxide surface and at x > 0.6 the salt melting enthalpy decreases to zero. The conductivity of the resulting composites was studied by impedance spectroscopy. It was shown that heterogeneous doping leads to a sharp increase in ion conductivity to 7.0 × 10–3 S/cm at 160°C and a decrease in the activation energy to 0.55 eV.  相似文献   

6.
Composite proton-conducting electrolytes are synthesized based on H4SiW12O40 · xH2O, CsHSO4, (CsH2PO4)0.9(CsHSO4)0.1 and mesoporous matrices SBA-15 and MCM-41 and their transport and structural characteristics are studied. Composites based on silicotungstic acid demonstrate the conductivity from ~10?3 to 10?4 S/cm in the temperature range of 25–140°C at the increased partial pressure of water vapor. The conductivity of systems CsHSO4-SBA-15 (at T = 140–200°C) and (CsH2PO4)0.9(CsHSO4)0.1-SBA-15 (at T = 200–230°C) reaches 10?2 S/cm and is independent of humidity. The electrolytes studied are promising as proton-exchange membranes of fuel cells operating at low and medium temperatures.  相似文献   

7.
A number of new ionic vinyl monomers composed of 1-vinylimidazolium cation with diethoxy- and dihydroxyphosphoryl groups and various anions—Br?, (CN)2N?, and (CF3SO2)2N?—are synthesized. The free-radical polymerization of the monomers in solutions of molecular and ionic solvents yields new polymer analogs of ionic liquids, and their molecular-mass characteristics, solubility, heat resistance, thermal stability, and electrical conductivity are estimated. It is shown that the incorporation of bulky phosphorylalkyl side substituents into the vinylimidazolium polycation causes a decrease in the glass-transition temperature and an increase in the ionic conductivity of polymer salts. The highest ionic conductivity (2.6 × 10?5 S/cm at 25°C) is exhibited by the polymer with the (CN)2N? anion.  相似文献   

8.
2-Alkylanilines with alkyl groups in the range of 4–15 carbon atoms were synthesized via a known method as well as via a more general path which should allow the introduction of a larger variety of substituted alkyl groups into the ortho position of aniline, e.g., alkenyl or OH, NH2, COOH, and phenyl functionality. Polymerization was found to be achievable according to a method previously described for unsubstituted aniline, i.e., chemically with Cu(ClO4)2 · 6H2O in acetonitrile. Intrinsic viscosities of the obtained poly(2-alkylaniline)s lay between 0.10 and 0.26 dL/g (97% H2SO4 at 30°C). The dc conductivity of the HCl salts decreased with increasing length of the alkyl side chains from 1 S/cm (polyaniline) over 3 X 10?4 S/cm [poly(2-butylaniline)] to 1 X 10?6 S/cm poly(tridecylaniline). Further characterization of the polymers were performed by means of UV/VIS/NIR-and-IR spectroscopy, in dilute solutions or as KBr pellets, respectively, and by solubility tests. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
Radical cyclopolymerization of 3-phenyl[5]ferrocenophane-1,5-dimethylene ( 2 ) and copolymerization with styrene gave polymers ( 3 and 4 ) with [3]ferrocenophane moieties pendant to the backbone. Cyclic voltammetry (CV) on polymer 3 in CH2Cl2 showed two oxidation waves at −0.13 and +0.05 V (versus ferrocene/ferrocenium) and CV on copolymer 4 showed one oxidation potential at −0.03 V. CV on 3 in dimethylacetamide showed only one oxidation potential at −0.10 V. Near-IR spectroscopy of partially oxidized 3 showed a broad intervalence band at ca. 2000 nm, indicative of low-energy barriers to electron hopping. Conductivity measurements on 3 and poly(vinylferrocene) (PVFc) oxidatively doped with iodine vapors under an argon atmosphere showed a maximum conductivity ca. 5 × 10−5 S/cm before the samples cracked, while 4 exhibited a maximum conductivity of 1.6 × 10−6 S/cm. On iodine doping under ambient conditions, polymers 3 , 4 , and PVFc showed maximum conductivities of 7.6 × 10−4, 9.5 × 10−5, and 5.5 × 10−5 S/cm, respectively. Conductivity measurement were also performed on samples of 3 +BF4 with oxidation levels ranging from 8 to 56%. Conductivities of these samples ranged from ca. 10−10 to 10−9 S/cm under vacuum and ca. 10−6 S/cm under ambient conditions, indicating that atmospheric moisture has a strong effect on the conductivity. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3365–3376, 1997  相似文献   

10.
Novel composite solid polymer electrolytes (CSPEs) and composite gel polymer electrolytes (CGPEs) have been prepared. CSPE consists of poly(ether-urethane) network polymer (PUN), fumed silicas and LiClO4. The ionic conductivity of CSPEs can be enhanced nearly 20 times in comparison with the plain system without the addition of fumed silicas and can be above 1×10−5 S/cm at room temperature. The effects of both kinds of fumed silicas, viz. uSiO2 with hydrophilic groups at the surface and mSiO2 with hydrophobic groups at the surface on ionic conductivity were investigated. CGPE comprising of the CSPE and LiClO4–PC solution with good mechanical strength exhibits ionic conductivity in the order of 10−3 S/cm at room temperature and above 3×10−4 S/cm at low temperature −40 °C.  相似文献   

11.
The electrochemical redox properties of a surface‐confined thin solid film of nanostructured cobalt(II) tetracarboxyphthalocyanine integrated with multiwalled carbon nanotube (nanoCoTCPc/MWCNT) have been investigated. This novel nanoCoTCPc/MWCNT material was characterized using SEM, TEM, zeta analysis and electrochemical methods. The nanoCoTCPc/MWCNT nanohybrid material exhibited an extra‐ordinarily high conductivity (15 mS cm?1), which is more than an order of magnitude greater than that of the MWCNT‐SO3H (527 µS cm?1) and three orders of a magnitude greater than the nanoCoTCPc (4.33 µS cm?1). The heterogeneous electron transfer rate constant decreases as follows: nanoCoTCPc/MWCNT (kapp≈19.73×10?3 cm s?1)>MWCNT‐SO3H (kapp≈11.63×10?3 cm s?1)>nanoCoTCPc (kapp≈1.09×10?3 cm s?1). The energy‐storage capability was typical of pseudocapacitive behaviour; at a current density of 10 µA cm?2, the pseudocapacitance decreases as nanoCoTCPc/MWCNT (3.71×10?4 F cm?2)>nanoCoTCPc (2.57×10?4 F cm?2)>MWCNT‐SO3H (2.28×10?4 F cm?2). The new nanoCoTCPc/MWCNT nanohybrid material promises to serve as a potential material for the fabrication of thin film electrocatalysts or energy‐storage devices.  相似文献   

12.
A new phase, Li4VO(PO4)2 was synthesized by a lithium ion exchange reaction from protonic phase, VO(H2PO4)2. The structure was determined from neutron and synchrotron powder diffraction data. The exchange of lithium causes a stress, leading to a change in the dimensionality of the structure from 3D to 2D by the displacement of oxygen atoms. Thus, Li4VO(PO4)2 crystallizes in P4/n space group with lattice parameters a=8.8204(1) Å and c=8.7614(2) Å. It consists of double layers [V2P4O18] formed by successive chains of VO6 octahedra and VO5 pyramids with isolated PO4 tetrahedra. The lithium ions located in between the layers promote mobility. Furthermore, the ionic conductivity of 10−4 S/cm at 550 °C for Li4VO(PO4)2 confirms the mobility of lithium ions in the layers. On the other hand, VO(H2PO4)2 exhibits a conductivity of 10−4 S/cm at room temperature due to the presence of protons in tunnels.  相似文献   

13.
Ion-conductive polymer which shows an ionic conductivity (σi) of 1.4 × 10?4S/cm at 25°C when mixed with LiClO4 (molar ratio in Li/OE = 0.05) was used as a separator of electrodes in a lithium secondary battery. The effect of high ionic conductivity on the performance of the battery was studied. The polymer structure was and the cathode was comprised of poly(1,3,4-thiadiazole disulfide), graphite powder and the polymer electrolyte. The cell [(?)Li/polymer electrolyte/graphite–poly(disulfide) (+)] had an open circuit voltage (Voc) of 3.25 V, a plateau voltage of 2.75 V, a discharge density (id) of 0.05 mA/cm2 with the cathode utilization of 63%, and achieved over several tens of cycles at 25°C.  相似文献   

14.
A number of methacrylate ionic monomers with different structures and mobilities of ionic centers were synthesized. The free-radical polymerization of these monomers in solution affords high-molecular-mass (M sD = 0.5 to 2.5 × 106) thermally stable (T dec > 170°C) polyelectrolytes or cationic or anionic “polymeric ionic liquids.” The conductivities of polycation- and polyanion-derived coatings are (7.4 × 10?10)?(7.6 × 10?7) and (4.9 × 10?10)-(1.6 × 10?7) S/cm (25°C), respectively. As exemplified by poly(1-[3-(methacryloyloxy)propyl]-3-methylimidazolium bis[(trifluoromethanesulfonyl)imide]), the molecular mass and glasstransition temperature of the polymer affect the ionic conductivity of the film coating. The transition from linear polyelectrolytes to crosslinked systems based on ionic monomers and poly(ethylene glycol dimethacrylate) 750 leads to the formation of elastic films featuring satisfactory strength, reduced glass-transition temperatures (?8 to +15°C), and increased ionic conductivity (up to 3.2 × 10?6 S/cm (25°C)).  相似文献   

15.
This paper reports the application of a polymethacrylate hydroxyethylene resin based electrolyte in electrochromic (EC) devices. The electrolyte is characterized by electrochemical impedance spectroscopy, visible spectroscopy, TGA, DSC, and DRX and tested as an ionic conductor in an EC device with the following configuration: Substrate/IZO/WO3/Polymer Electrolyte/(CeO2)TiO2/IZO/Substrate. The electrolyte presents an ionic conductivity of 10?7 S/cm at room temperature and TGA analysis show that electrolyte is thermally degraded at 200°C. The EC device based on this polymethacrylate hydroxyethylene resin electrolyte system shows memory effect and exhibits an excellent optical density. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Synthesis from aqueous peroxide solutions provides lithium-aluminum titanophosphate Li1.3Al0.3Ti1.7(PO4)3 (LATP) with particles of submicron size and conductivity of (4–5) × 10?4 S/cm at the room temperature. LATP were characterized using the methods of XRD, DTA/TG, measurement of specific surface area, ionic and electronic conductivity. According to XRD, a single-phase crystalline product with the specific surface area of 8.2 m2/g is formed as a result of precursor sintering at 700°C (the average particle size of electrolyte was 250 nm). Sizes of coherent-scattering region were calculated on the basis of the values of intrinsic broadening of diffraction maximums. Analysis of broadening of diffraction maximums indicates that the size of primary LATP crystallites after sintering at 700°C was 90 nm according to peak (113) (2θ = 24.5°) and 110 nm according to peak (104) (2θ = 20.9°). The synthesized submicron LATP powders are suitable for formation of solid electrolyte films using the method of aerosol deposition.  相似文献   

17.
Thermally stable, nonrigid-rod poly(benzobisthiazoles), (R)TPA-PBZT , where R = H, Me, NMe2, and OH, and poly(benzobisoxazoles), (R)TPA-PBO , where R = Me, NMe2 containing electron-rich triarylamine groups with various para-substituents (Rs) on the pendent phenyl ring, were synthesized from either 2,5-diamino-1,4-benzenedithiol dihydrochloride or 2,4-diamino-1,5-benzenediol dihydrochloride and the respective triarylamine-based dinitrile or diacid monomer in polyphosphoric acid. Whereas (R)TPA-PBZT polymers were obtained in moderate molecular weights, analogous (R)TPA-PBO polymers were only prepared in low molecular weights. No lyotropic behaviors, characteristic of the unmodified rigid-rod benzazole polymers, as evidenced by the absence of either stir opalescence or birefringence under crosspolarizers, were observed for these homopolymers at about 10 wt % polymer concentration. Among these polymers, only (Me)TPA-PBZT and (NMe2)TPA-PBZT formed cast films with good mechanical integrity. In their pristine state, their film conductivity values were in the range of 10−10–10−9 S/cm at room temperature. Upon exposure to iodine vapor, their conductivities were increased to the maximal values of 5.0 × 10−5 S/cm ( (Me)TPA-PBZT ) and 4.1 × 10−4 S/cm ( (NMe2)TPA-PBZT ). © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1909–1924, 1997  相似文献   

18.
2-Arylazo-1-vinylpyrroles react with protic (CF3COOH, HCl) and aprotic (BF3) acids forming deeply colored oligomeric products consisting of soluble (in benzene, chloroform) and insoluble fractions with yields amounting to 73 %. According to the data from 1H NMR and IR spectroscopy oligomerization takes place mainly at the 1-vinyl group with partial involvement of the pyrrole ring. The process is accompanied by capture of the catalyzing acids by the azo group, leading to strong polarization of the elementary unit with transfer of positive charge to the pyrrole ring, which thus becomes capable of further transformations with cross-linking of oligomeric chains. The obtained oligomers possess electric conductivity of 10−13-10−9 S/cm, which is increased to 4.8∙10−6 S/cm when the products are iodinated with iodine vapor.  相似文献   

19.
The thermomechanical and electrical conductivity properties of praseodymium molybdate Pr5Mo3O16 + δ prepared by a solid-phase method were studied. The electrical conductivity of praseodymium molybdate samples measured at temperatures in the range 373–1173 K with the oxygen partial pressure in the gas of 10–3 to 0.21 atm was found to increase from ~10–7 to ~10–2 S/cm and to be almost independent of oxygen pressure. It is for the first time that electrical conductivity a reductive atmosphere (Ar/H2 5%) was found to increase from 0.1 to 1.2 S/cm in the same temperature range. Studies of the chemical stability of Pr5Mo3O16 + δ with respect to solid electrolytes showed the absence of chemical reactions with GDC at 1273 K and with YSZ at 1223 K. The combination of these properties evidences for the potential of praseodymium molybdate for use as an anode material for solid oxide fuel cells (SOFCs).  相似文献   

20.
Studies on direct-current electrical conductivity and optical properties of a new solution of processable conducting polymer are reported. Electrical conductivity of thin films of the polymer on glass plate at room temperature was 6×10−6 S/cm. Study of conductivity with variation of temperature does not provide any definite thermal activation energy, which is in accordance with the amorphous nature of polymer. Optical absorption data adopting the Bardeen equation showed that maximum ‘optical gap’ (E g ) is 3.30 eV. Doping with Br2-vapor was found to be only partially effective in decreasingE g by 0.43 eV. The polymer was found to be quite stable under normal atmospheric conditions. Environmental stability of both undoped and doped polymer has been discussed. Part 2: [5]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号