首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A chemically amplified photosensitive and thermosetting polymer based on poly[2,6‐di(3‐methyl‐2‐butenyl)phenol (15 mol %)‐co‐2,6‐dimethylphenol (85 mol %)] ( 3c ) and a photoacid generator [(5‐propylsulfonyloxyimino‐5H‐thiophen‐2‐ylidene)‐(2‐methylphenyl)acetonitrile] was developed. Poly[2,6‐bis(3‐methyl‐2‐butenyl)phenol]‐co‐2,6‐dimethylphenol)] ( 3 ) with high molecular weights (number‐average molecular weight ~ 24,000) was prepared by the oxidative coupling copolymerization of 2,6‐di(3‐methyl‐2‐butenyl)phenol with 2,6‐dimethylphenol in the presence of copper(I) chloride and pyridine as the catalyst under a stream of oxygen. The structures of 3 were characterized with IR, 1H NMR, and 13C NMR spectroscopy. 3 was crosslinked by a thermal treatment at 300 °C for 1 h under N2. The 5% weight loss temperatures and glass‐transition temperatures of the cured copolymers reached around 420 °C in nitrogen and 300 °C, respectively. The average refractive index of the cured copolymer ( 3c ) film was 1.5452, from which the dielectric constant at 1 MHz was estimated to be 2.6. The resist showed a sensitivity of 35 mJ cm?2 and a contrast of 1.6 when it was exposed to 436‐nm light, postexposure‐baked at 145 °C for 5 min, and developed with toluene at 25 °C. A fine negative image featuring 8‐μm line‐and‐space patterns was obtained on a film exposed to 100 mJ cm?2 with 436‐nm light in the contact‐printed mode. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 149–156, 2005  相似文献   

2.
A positive working photosensitive polymer based on poly(2,6‐dihydroxy‐1,5‐naphthylene) (PDHN) with 1‐(1,1‐bis{4‐[2‐diazo‐1(2H)naphthalene‐5‐sulfonyloxy]phenyl}ethyl)‐4‐(1‐{4‐[2‐diazo‐1(2H)naphthalene‐5‐sulfonyloxy]phenyl}methylethyl) benzene (S‐DNQ) as a photosensitive compound has been developed. PDHN (number‐average molecular weight: 13,000; polydispersity index: 1.9) was prepared by oxidative coupling polymerization of the 2,6‐dihydroxynaphthalene‐benzylamine complex using iron(III) chloride hexahydrate in the solid state. A 10 wt % loss temperature of PDHN was 450 °C in air, and the film of 1 μm thickness showed excellent transparency above 400 nm. The resist system consisting of PDHN and S‐DNQ gave a clear positive pattern when it was exposed to 436 nm of light, followed by development with a 0.50 wt % aqueous tetramethylammonium hydroxide solution at 25 °C. The sensitivity (D) and contrast (γ) were 300 mJ/cm2 and 2.1, respectively. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 393–398, 2002  相似文献   

3.
A new negative‐working and alkaline‐developable photosensitive polyimide precursor based on poly(amic acid) (PAA), 4,4′‐methylenebis[2,6‐bis(hydroxymethyl)]phenol (MBHP) as a crosslinker, and a photoacid generator (5‐propylsulfonyloxyimino‐5H‐thiophen‐2‐ylidene)‐2‐(methylphenyl)acetonitrile (PTMA) has been developed. PAA was prepared by ring‐opening polymerization of pyromellitic dianhydride with 4,4′‐oxydianiline. The photosensitive polyimide precursor containing PAA (65 wt %), MBHP (25 wt %), and PTMA (10 wt %) showed a clear negative image featuring 10 μm line and space patterns when it was exposed to 436 nm light at 100 mJ·cm?2, post‐exposure baked at 130 °C for 3 min, followed by developing with a 2.38 wt % aqueous tetramethylammonium hydroxide solution at 25 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 593–599, 2005  相似文献   

4.
A negative‐type photosensitive poly(phenylene ether) (PSPPE) based on poly(2,6‐dimethyl‐1,4‐phenylene ether) (PPE), a novel crosslinker 4,4′‐methylene‐bis [2,6‐bis(methoxymethyl)phenol] (MBMP) having good compatibility with PPE, and diphenylidonium 9,10‐dimethoxy anthracene‐2‐sulfonate (DIAS) as a photoacid generator (PAG) has been developed. This resist consisting of PPE (73 wt %), MBMP (20 wt %) and DIAS (7 wt %) showed a high sensitivity (D0.5) of 58 mJ/cm2 and a contrast (γ0.5) of 9.5 when it was exposed to i‐line (365 nm wavelength light), postexposure baked at 145 °C for 10 min, and developed with toluene at 25 °C. A fine negative image featuring 6 μm line‐and‐space pattern was obtained on the film exposed to 300 mJ/cm2 of i‐line by a contact‐printed mode. The resulting polymer film cured at 300 °C for 1 h under nitrogen had a low dielectric constant (ε = 2.46) comparable to that of PPE and a higher Tg than that of PPE. In addition, the cured PSPPE film was pretty low water absorption (<0.05%) as same as PPE. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4949–4958, 2008  相似文献   

5.
A positive‐type photosensitive polyimide (PSPI) based on poly(amic acid) (PAA), a crosslinker 1,1,1‐tris{4‐[2‐(vinyloxy)ethoxy]phenyl}ethane (TVPE), a photoacid generator (PAG) (5‐propylsulfonyloxyimino‐5H‐thiophen‐2‐ylidene)‐2‐(methylphenyl)acetonitrile (PTMA), and a thermobase generator (TBG) t‐butyl 2,6‐dimethylpiperidine‐1‐carboxylate (BDPC) has been developed as a promising material in microelectronics. The PAA was prepared from 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA) and 4,4′‐oxydianiline (ODA) in dimethyl sulfoxide (DMSO). The PSPI, consisting of PAA (69 wt %), TPVE (21 wt %), PTMA (3 wt %), and BDPC (7 wt %), showed high sensitivity of 21 mJ/cm2 and a high contrast of 6.8 when it was exposed to a 436‐nm line (g‐line), postbaked at 90 °C for 5 min, and developed with 1.69 wt % TMAHaq. A clear positive image of 8 μm line and space pattern was printed on film, which was exposed to 50 mJ/cm2 of g‐line by a contact printing mode and fully converted to the corresponding polyimide (PI) pattern on heating at 200 °C, confirmed by FTIR spectroscopy. Thus, this system will be a good candidate for next generation PSPIs. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3362–3369, 2009  相似文献   

6.
A series of three new 1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole‐based polymers such as poly[1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole] ( PTPT ), poly[1,4‐(2,5‐bis(octyloxy)phenylene)‐alt‐5,5'‐(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole)] ( PPTPT ), and poly[2,5‐(3‐octylthiophene)‐alt‐5,5'‐(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole)] ( PTTPT ) were synthesized and characterized. The new polymers were readily soluble in common organic solvents and the thermogravimetric analysis showed that the three polymers are thermally stable with the 5% degradation temperature >379 °C. The absorption maxima of the polymers were 478, 483, and 485 nm in thin film and the optical band gaps calculated from the onset wavelength of the optical absorption were 2.15, 2.20, and 2.13 eV, respectively. Each of the polymers was investigated as an electron donor blending with PC70BM as an electron acceptor in bulk heterojunction (BHJ) solar cells. BHJ solar cells were fabricated in ITO/PEDOT:PSS/polymer:PC70BM/TiOx/Al configurations. The BHJ solar cell with PPTPT :PC70BM (1:5 wt %) showed the power conversion efficiency (PCE) of 1.35% (Jsc = 7.41 mA/cm2, Voc = 0.56 V, FF = 33%), measured using AM 1.5G solar simulator at 100 mW/cm2 light illumination. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

7.
A novel fluorinated diamine monomer, 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)‐2,5‐di‐tert‐butylbenzene ( 2 ), was prepared through the nucleophilic substitution reaction of 2‐chloro‐5‐nitrobenzotrifluoride and 2,5‐di‐tert‐butylhydroquinone in the presence of potassium carbonate, followed by catalytic reduction with hydrazine and Pd/C. Fluorinated polyimides ( 5a – 5f ) were synthesized from diamine 2 and various aromatic dianhydrides ( 3a – 3f ) via thermal or chemical imidization. These polymers had inherent viscosities of 0.77–1.01 dL/g. The 5 series polyimides were soluble in N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, and N,N‐dimethylformamide and were even soluble in dioxane, tetrahydrofuran, and dichloromethane. 5 (C) showed cutoff wavelengths between 363 and 404 nm and yellowness index (b*) values of 6.5–40.2. The polyimide films had tensile strengths of 93–114 MPa, elongations to break of 9–12%, and initial moduli of 1.7–2.1 GPa. The glass‐transition temperatures were 255–288 °C. The temperatures of 10% weight loss were all above 460 °C in air or nitrogen atmospheres. In comparison with a nonfluorinated polyimide series based on 1,4‐bis(4‐aminophenoxy)‐2,5‐di‐tert‐butylbenzene, the 5 series showed better solubility and lower color intensity, dielectric constants, and moisture absorption. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2272–2284, 2004  相似文献   

8.
Two methylphenylsiloxane monomers with crosslinkable benzocyclobutene functionalities at the terminal positions, 1,1,5,5‐dimethyldiphenyl‐1,1,5,5‐di[2′‐(4′‐benzocyclobutenyl)vinyl]‐3,3‐diphenyltrisiloxane (BCB‐1) and 1,1,3,3‐dimethyl‐diphenyl‐1,1,3,3‐di[2′‐(4′‐benzocyclobutenyl)vinyl]disiloxane (BCB‐2) were prepared and characterized. By heating the solution of BCB‐1 and BCB‐2 in mesitylene, two partially polymerized resins of BCB‐1B and BCB‐2B with high molecular weight were also achieved. The monomers and their oligomers fully cured at temperatures above 250 °C. Cured BCB‐1 and BCB‐2 exhibited high Tg (257 and 383 °C) and good thermal stability (T5% > 472 °C both in N2 and in air). They also demonstrated low dielectric constants (2.69 and 2.66), low dissipation factors (2.36 and 2.23), and low water absorptions (0.20% and 0.17%). Moreover, a negative photosensitive formulation derived from BCB‐1B in combination with 2,6‐bis(4‐azidobenzylidene)‐4‐methylcyclohexanone (BAC‐M) as a photosensitive agent has been developed. The photosensitive composition, BCB‐1B containing 5 wt % BAC‐M, showed a sensitivity of 550 mJ/cm2 and a contrast of 1.96 when it was exposed to a 365 nm light (i‐line) and developed with cyclohexanone at 25 °C. A fine negative image of 10 μm line‐and‐space pattern was also printed in a film which was exposed to 700 mJ/cm2 of i‐line by contact‐printing mode. The negative image can be maintained without any pattern deformation in the curing process. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6246–6258, 2009  相似文献   

9.
A series of novel polyamide‐imides III containing 2,6‐bis(phenoxy)naphthalene units were synthesized by 2,6‐bis(4‐aminophenoxy)naphthalene and various bis(trimellitimide)s in N‐methyl‐2‐pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents through direct polycondensation. The polymers were obtained in quantitative yield with inherent viscosities up to 1.53 dL/g. Most of the polymers showed good solubility in NMP, N,N‐dimethylacetamide, N,N‐dimethylformamide, and dimethyl sulfoxide and could be solution‐cast into transparent, flexible, and tough films. The films had tensile strengths of 84–111 MPa, elongations at break of 8–33%, and initial moduli of 2.2–2.8 GPa. Wide‐angle X‐ray diffraction revealed that most polymers III were amorphous. The glass‐transition temperatures of some of the polymers could be determined by differential scanning calorimetry traces, recorded at 247–290 °C. The polyamide‐imides exhibited excellent thermal stabilities and had 10% weight loss at temperatures in the range of 501–575 °C under nitrogen atmosphere. They left more than 57% residue even at 800 °C in nitrogen. A comparative study of some corresponding polyamide‐imides is also presented. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2591–2601, 2001  相似文献   

10.
A new diamine containing isopropylidene, methyl substituted arylene ether, and trifluoromethyl groups, 2,2‐bis[4‐(2‐trifluoromethyl‐4‐aminophenoxy)‐3,5‐dimethylphenyl]propane (BTADP), was synthesized and used in preparation of a series of polyimides by direct polycondensation with various aromatic tetracarboxylic dianhydrides in N, N‐dimethylacetamide (DMAc). All polymers derived from diamine (BTADP) with trifluoromethyl substituents were highly organosoluble in the solvents, like N‐methyl‐2‐pyrrolidinone (NMP), N,N‐dimethylacetamide, N,N‐dimethylformamide (DMF), pyridine, chloroform, tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), dichloromethane, cyclohexanone, and γ‐butyrolactone at room temperature or upon heating at 70 °C. Inherent viscosities of the polyimides were found to range between 0.58 and 0.97 dL·g?1. These polyimides had glass transition temperatures between 256 and 307 °C, and their 10% mass loss temperatures ranged from 440 to 462 °C and 421 to 443 °C under nitrogen and air, respectively. These polyimides had low dielectric constants in the range of 2.84–3.09. All the polyimides could be cast into films from DMAc solutions and were thermally converted into color lightness, optically transparent, flexible, and tough polyimides. The polyimide films had a tensile strength in the range of 83–97 MPa and a tensile modulus in the range of 2.0–2.2 GPa. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5766–5774, 2004  相似文献   

11.
Ring‐opening polymerization of ε‐caprolactone (ε‐CL) was carried out using β‐diketiminato‐supported monoaryloxo ytterbium chlorides L1Yb(OAr)Cl(THF) (1) [L1 = N,N′‐bis(2,6‐dimethylphenyl)‐2,4‐pentanediiminato, OAr = 2,6‐di‐tert‐butylphenoxo‐], and L2Yb(OAr′)Cl(THF) (2) [L2 = N,N′‐bis(2,6‐diisopropylphenyl)‐2,4‐pentanediiminato, OAr′ = 2,6‐di‐tert‐butyl‐4‐methylphenoxo‐], respectively, as single‐component initiator. The influence of reaction conditions, such as polymerization temperature, polymerization time, initiator, and initiator concentration, on the monomer conversion, molecular weight, and molecular weight distribution of the resulting polymers was investigated. Complex 1 was well characterized and its crystal structure was determined. Some features and kinetic behaviors of the CL polymerization initiated by these two complexes were studied. The polymerization rate is first order with respect to monomer. The Mn of the polymer increases linearly with the increase of the polymer yield, while polydispersity remained narrow and unchanged throughout the polymerization in a broad range of temperatures from 0 to 50 °C. The results indicated that the present system has a “living character”. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1147–1152, 2006  相似文献   

12.
The synthesis, one‐ and two‐photon absorption (TPA) and emission properties of two novel 2,6‐anthracenevinylene‐based copolymers, poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinylene‐alt‐N‐octyl‐3,6‐carbazolevinyl‐ene] ( P1 ) and poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinyl‐ene‐alt‐N‐octyl‐2,7‐carbazolevinylene] ( P2 ) were reported. The as‐synthesized polymers have the number‐average molecular weights of 1.56 × 104 for P1 and 1.85 × 104 g mol?1 for P2 and are readily soluble in common organic solvents. They emit strong bluish‐green one‐ and two‐photon excitation fluorescence in dilute toluene solution (? P1 = 0.85, ? P2 = 0.78, λem( P1 ) = 491 nm, λem( P2 ) = 483 nm). The maximal TPA cross‐sections of P1 and P2 measured by the two‐photon‐induced fluorescence method using femtosecond laser pulses in toluene are 840 and 490 GM per repeating unit, respectively, which are obviously larger than that (210 GM) of poly[9,10‐bis‐(3,4‐bis(2‐ethylhexyloxy) phenyl)‐2,6‐anthracenevinylene], indicating that the poly(2,6‐anthracenevinylene) derivatives with large TPA cross‐sections can be obtained by inserting electron‐donating moieties into the polymer backbone. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 463–470, 2010  相似文献   

13.
Two series of fluorinated polyimides were prepared from 2,2′‐bis(4‐amino‐2‐trifluoromethylphenoxy)biphenyl ( 2 ) and 2,2′‐bis(4‐amino‐2‐trifluoromethylphenoxy)‐1,1′‐binaphthyl ( 4 ) with various aromatic dianhydrides via a conventional, two‐step procedure that included a ring‐opening polyaddition to give poly(amic acid)s, followed by chemical or thermal cyclodehydration. The inherent viscosities of the polyimides ranged from 0.54 to 0.73 and 0.19 to 0.36 dL/g, respectively. All the fluorinated polyimides were soluble in many polar organic solvents, such as N,N‐dimethylacetamide and N‐methylpyrrolidone, and afforded transparent and light‐colored films via solution‐casting. These polyimides showed glass‐transition temperatures in the ranges of 222–280 and 257–351 °C by DSC, softening temperatures in the range of 264–301 °C by thermomechanical analysis, and a decomposition temperature for 10% weight loss above 520 °C both in nitrogen and air atmospheres. The polyimides had low moisture absorptions of 0.23–0.58%, low dielectric constants of 2.84–3.61 at 10 kHz, and an ultraviolet–visible absorption cutoff wavelength at 351–434 nm. Copolyimides derived from the same dianhydrides with an equimolar mixture of 4,4′‐oxydianiline and diamine 2 or 4 were also prepared and characterized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2416–2431, 2004  相似文献   

14.
A novel bis(ether anhydride) monomer, 2′,5′‐bis(3,4‐dicarboxyphenoxy)‐p‐terphenyl dianhydride, was synthesized from the nitro displacement of 4‐nitrophthalonitrile by the phenoxide ion of 2′,5′‐dihydroxy‐p‐terphenyl, followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and cyclodehydration of the resulting bis(ether diacid). A series of new poly(ether imide)s bearing laterally attached p‐terphenyl groups were prepared from the bis(ether anhydride) with various aromatic diamines via a conventional two‐stage process that included ring‐opening polyaddition to form the poly(amic acid)s followed by thermal or chemical imidization to the poly(ether imide)s. The inherent viscosities of the poly(amic acid) precursors were in the range of 0.62–1.26 dL/g. Most of the poly(ether imide)s obtained from both routes were soluble in polar organic solvents, such as N,N‐dimethylacetamide. All the poly(ether imide)s could afford transparent, flexible, and strong films with high tensile strengths. The glass‐transition temperatures of these poly(ether imide)s were recorded as between 214 and 276 °C by DSC. The softening temperatures of all the poly(ether imide) films stayed in the 207–265 °C range according to thermomechanical analysis. For all the polymers significant decomposition did not occur below 500 °C in nitrogen or air atmosphere. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1008–1017, 2004  相似文献   

15.
A new trifluoromethyl‐substituted bis(ether amine) monomer, 2,7‐bis(4‐amino‐2‐trifluoromethylphenoxy)naphthalene, was synthesized. It led to a series of novel fluorinated polyimides by thermal and chemical imidization routes when reacted with various commercially available aromatic tetracarboxylic dianhydrides. Most of the polyimides obtained from both routes were soluble in many organic solvents, such as N,N‐dimethylacetamide. All the polyimides could afford transparent, flexible, and strong films with low moisture absorptions of 0.3–0.6%, low dielectric constants of 2.52–3.27 at 10 kHz, and an ultraviolet–visible absorption cutoff wavelength at 377–436 nm. The glass‐transition temperatures of the polyimides were in the range of 244–297 °C, and the 5% weight‐loss temperatures were higher than 550 °C. For a comparative study, a series of analogous polyimides based on 2,7‐bis(4‐aminophenoxy)naphthalene were also prepared and characterized. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2001–2018, 2003  相似文献   

16.
A novel poly(σ‐hydroxyamide) (PHA) based photosensitive polymer that exhibits high transparency at 365 nm wavelength (i‐line) has been developed. Time‐dependent density functional theory (TD‐DFT) calculations using the B3LYP hybrid functional were performed to predict the transparencies of various hydroxyamides in the i‐line region. Based on the calculations, 4,4′‐sulfonylbis(σ‐aminophenol) (SAP) was prepared and polymerized with 4,4′‐oxybis(benzoyl chloride) (OBBC), and the resulting PHA, which is abbreviated as PHA‐S, showed a high transparency comparable to that of PHA derived from 4,4′‐(hexafluoroisopropylidene)bis(σ‐aminophenol). Positive‐type photosensitive PHA was then formulated based on PHA‐S with a crosslinker 1,3,5‐tris[(2‐vinyloxy)ethoxy]benzene (TVEB) and a photoacid generator (5‐propylsulfonyloxyimino‐5H‐thiophen‐2‐ylidene)‐2‐(methylphenyl)acetonitrile (PTMA) (17:3:1 in weight ratio), and demonstrated photosensitivity and contrast of 14 mJ/cm2 and 2.7, respectively, when the resist film was prebaked at 120 °C for 5 min, irradiated by i‐line, post exposure baked at 120 °C for 5 min, developed with an 2.38 wt% TMAH solution for 5 s. A clear positive image featuring 10‐μm line‐and‐space was also printed in a film which was exposed to 50 mJ/cm2 of i‐line by contact‐printing. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2527–2535, 2005  相似文献   

17.
A novel, trifluoromethyl‐substituted, bis(ether amine) monomer, 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)naphthalene, was synthesized through the nucleophilic displacement of 2‐chloro‐5‐nitrobenzotrifluoride with 1,4‐dihydroxynaphthalene in the presence of potassium carbonate in dimethyl sulfoxide, followed by catalytic reduction with hydrazine and Pd/C in ethanol. A series of new fluorine‐containing polyimides with inherent viscosities of 0.57–0.91 dL/g were prepared by reacting the diamine with six commercially available aromatic dianhydrides via a conventional, two‐step thermal or chemical imidization method. Most of the resulting polyimides were soluble in strong polar solvents such as N‐methylpyrrolidone and N,N‐dimethylacetamide (DMAc). All the polyimides afforded transparent, flexible, and strong films with good tensile properties. These polyimides exhibited glass‐transition temperatures (Tg's) (by DSC) and softening temperatures (by thermomechanical analysis) in the ranges of 252–315 and 254–301 °C, respectively. Decomposition temperatures for 5% weight loss all occurred above 500 °C in both air and nitrogen atmospheres. The dielectric constants of these polyimides ranged from 3.03 to 3.71 at 1 MHz. In addition, a series of new, fluorinated polyamides with inherent viscosities of 0.32–0.62 dL/g were prepared by the direct polycondensation reaction the diamine with various aromatic dicarboxylic acids by means of triphenyl phosphite and pyridine. All the polyamides were soluble in polar solvents such as DMAc and could be solution‐cast into tough and flexible films. These polyamides had Tg's between 228 and 256 °C and 10% weight‐loss temperatures above 400 °C in nitrogen or air. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2377–2394, 2004  相似文献   

18.
A novel monomer, 2,2‐bis‐(4′‐fluorobenzoylphenoxy)‐4,4,6,6‐bis[spiro‐(2′,2″‐dioxy‐1′, 1′‐biphenylyl)] cyclotriphosphazene, was synthesized and polymerized with 4,4′‐difluorobenzophenone as a comonomer and 4,4′‐isopropylidenediphenol or 4,4′‐(hexafluoroisopropylidene) diphenol in N,N‐dimethylacetamide at 162 °C for 4 h to give two series of aromatic cyclolinear phosphazene polyetherketones containing bis‐spiro‐substituted cyclotriphosphazene groups. The structure of the monomer was confirmed by 1H, 13C, and 31P NMR. The effect of the incorporation of the bis‐spiro‐substituted cyclotriphosphazene group on the thermal properties of these polymers was investigated by DSC and thermogravimetric analysis. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2993–2997, 2001  相似文献   

19.
A novel positive‐working and aqueous‐base‐developable photosensitive poly(imide benzoxazole) precursor based on a poly(amic acid hydroxyamide) bearing phenolic hydroxyl groups and carboxylic acid groups, a diazonaphthoquinone (DNQ) photosensitive compound, and a solvent was developed. Poly(amic acid hydroxyamide) was prepared through the polymerization of 2,2‐bis(3‐amino‐4‐hydroxyphenyl)hexafluoropropane, trimellitic anhydride chloride, and 4,4′‐oxydibenzoyl chloride. Subsequently, the thermal cyclization of the poly(amic acid hydroxyamide) precursor at 350 °C produced the corresponding poly(imide benzoxazole). The inherent viscosity of the precursor polymer was 0.17 dL/g. The cyclized poly(imide benzoxazole) showed a high glass‐transition temperature of 372 °C and 5% weight loss temperatures of 535 °C in nitrogen and 509 °C in air. The structures of the precursor polymer and the fully cyclized polymer were characterized with Fourier transform infrared and 1H NMR. The photosensitive polyimide precursor containing 25 wt % DNQ photoactive compound showed a sensitivity of 256 mJ/cm2 and a contrast of 1.14 in a 3‐μm film with a 0.6 wt % tetramethylammonium hydroxide developer. A pattern with a resolution of 5 μm was obtained from this composition. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5990–5998, 2004  相似文献   

20.
A new phosphorus‐containing aromatic diamine, 1,4‐bis(4‐aminophenoxy)‐2‐(6‐oxido‐6H‐dibenz[c,e] [1,2]oxaphosphorin‐6‐yl) phenylene ( 3 ) was synthesized by the nucleophilic aromatic substitution of 2‐(6‐oxido‐6H‐dibenz[c,e] [1,2]oxaphosphorin‐6‐yl)‐1,4‐dihydroxy phenylene ( 1 ) with 4‐fluoronitrobenzene, followed by catalytic hydrogenation. Light color, flexible, and creasable polyimides with high molecular weight, high glass transition, high thermal stability, improved organosolubility, and good oxygen plasma resistance were synthesized from the condensation of ( 3 ) with various aromatic dianhydrides in N,N‐dimethylacetamide, followed by thermal imidization. The number‐average molecular weights of polyimides are in the range of 7.0–8.3 × 104 g/mol, and the weight‐average molecular weights are in the range of 12.5–16.5 × 104 g/mol. The Tgs of these polyimides range from 230 to 304 °C by differential scanning calorimetry and from 228 to 305 °C by DMA. These polyimides are tough and flexible, with tensile strength at around 100 MPa. The degradation temperatures (Td 5%) and char yields at 800 °C in nitrogen range from 544 to 597 °C and 59–65 wt %, respectively. Polyimides 5c and 5e , derived from OPDA and 6FDA, respectively, with the cutoff wavelength of 347 and 342 μm, respectively, show very light color. These polyimides also exhibit good oxygen plasma resistance. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2897–2912, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号