首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The controlled/living radical polymerization of vinyl acetate (VAc) and its copolymerization with methyl acrylate (MA) were investigated in bulk or fluoroalcohols using manganese complex [Mn2(CO)10] in conjunction with an alkyl iodide (R? I) as an initiator under weak visible light. The manganese complex induced the controlled/living radical polymerization of VAc even in the fluoroalcohols without any loss of activity. The R? I/Mn2(CO)10 system was also effective for the copolymerization of MA and VAc, in which MA was consumed faster than VAc, and then the remaining VAc was continuously and quantitatively consumed after the complete consumption of MA. The 1H and 13C NMR analyses revealed that the obtained products are block copolymers consisting of gradient MA/VAc segments, in which the VAc content gradually increases, and homopoly(VAc). The use of fluoroalcohols as solvents increased the copolymerization rate, controllability of the molecular weights, and copolymerizability of VAc. The saponification of the VAc units in poly(MA‐grad‐VAc)‐block‐poly(VAc) resulted in the corresponding poly(MA‐co‐γ‐lactone)‐block‐poly(vinyl alcohol) due to the intramolecular cyclization between the hydroxyl and neighboring carboxyl groups in the gradient segments. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1343–1353, 2009  相似文献   

2.
Two novel trifluorovinyl ether (TFVE) monomers were copolymerized with either ethyl vinyl ether (EVE) or vinyl acetate (VAc) in a redox‐initiated aqueous emulsion: 1‐(2‐phenoxyethoxy)‐1,2,2‐trifluoroethene (Ph‐TFVE) and 1‐[2‐(2‐ethoxyethoxy)ethoxy]‐1,2,2‐trifluoroethene (Et‐TFVE). Previous studies demonstrated a propensity for radical hydrogen abstraction from the oligoether pendant group during the homopolymerization of Et‐TFVE with continued propagation of the resulting radical, thereby providing the rationale to investigate the copolymerization of our new TFVEs with EVE or VAc. Reactivity ratios were estimated using the error‐in‐variables model from a series of bulk free radical copolymerizations of Ph‐TFVE with EVE or VAc. The reactivity ratios were rPh‐TFVE = 0.25 ± 0.07, rEVE = 0.016 ± 0.04; rPh‐TFVE = 0.034 ± 0.04, rVAc =0.89 ±0.08. Partial hydrolysis of polymers containing VAc to vinyl alcohol (VA) resulted in two terpolymers: poly(Ph‐TFVE‐co‐VAc‐co‐VA) and poly(Et‐TFVE‐co‐VAc‐co‐VA), respectively. We investigated the possibility of hydrogen abstraction from VAc during polymerization by comparing the molar mass before and after hydrolysis. Abstraction from VAc was not apparent during polymerization; however, abstraction from the oligoether pendant group of Et‐TFVE was again evident and was more significant for those copolymers having a greater fraction of Et‐TFVE in the monomer feed. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1344–1354, 2000  相似文献   

3.
Soluble microgels with several pendant vinyl groups were synthesized by radical copolymerization of methyl methacrylate (MMA) with p-divinyl benzene (p-DVB). The polymerization conditions used for intramolecular crosslinking of microgels were chosen from gel permeation chromatograph (GPC) measurements of the reaction products. The rate constant of intramolecular crosslinking (kpi) was estimated from the changes in the concentration of pendant vinyl groups of microgel by using photometrical measurements at 30°C assuming a unimolecular termination mechanism of polymer radicals. As a result, kpi showed larger values than kp of styrene and depended strongly on the internal structure of the microgels.  相似文献   

4.
The ethylene (M1)–vinyl acetate (M2) copolymerization at 62°C and 35 kg/cm2 with α,α′-azo-bisisobutyronitrile as initiator has been studied in four different solvents, viz., tert-butyl alcohol, isopropyl alcohol, benzene, and N,N-dimethylformamide. The experimental method used was based on frequent measurement of the composition of the reaction mixture throughout the copolymerization reaction by means of quantitative gas chromatographic analysis. Highly accurate monomer reactivity ratios have been calculated by means of the curve-fitting I procedure. The observed dependence of the r values on the nature of the solvent is surprisingly large and can be correlated with the volume changes (= excess volumes) observed on mixing vinyl acetate (VAc) with the relevant solvent. An increased hydrogen bonding or dipole–dipole interaction through the carbonyl moiety of the acetate side group of VAc, induces a decreased electron density on the vinyl group of VAc, which in turn leads to a decreased VAc reactivity. The differences among the overall rates of copolymerization in the various solvents can be interpreted in terms of a variable chain transfer to solvent and the rate of the subsequent reinitiation by the solvent radical. In the case of benzene, complex formation is believed to play an important part.  相似文献   

5.
Free‐radical copolymerizations of vinyl acetate (VAc = M1) and other vinyl esters (= M2) including vinyl pivalate (VPi), vinyl 2,2‐bis(trifluoromethyl)propionate (VF6Pi), and vinyl benzoate (VBz) with fluoroalcohols and tetrahydrofuran (THF) as the solvents were investigated. The fluoroalcohols affected not only the stereochemistry but also the polymerization rate. The polymerization rate was higher in the fluoroalcohols than in THF. The accelerating effect of the fluoroalcohols on the polymerization was probably due to the interaction of the solvents with the ester side groups of the monomers and growing radical species. The difference in the monomer reactivity ratios (r1, r2) in THF and 2,2,2‐trifluoroethanol was relatively small for all reaction conditions and for the monomers tested in this work, whereas r1 increased in the VAc‐VF6Pi copolymerization and r2 decreased in the VAc‐VPi copolymerization when perfluoro‐tert‐butyl alcohol was used as the solvent. These results were ascribed to steric and monomer‐activating effects due to the hydrogen bonding between the monomers and solvents. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 220–228, 2000  相似文献   

6.
Trimethoxyvinylsilane (TMVS) was quantitatively polymerized at 130 °C in bulk, using dicumyl peroxide (DCPO) as initiator. The polymerization of TMVS with DCPO was kinetically studied in dioxane by Fourier transform near‐infrared spectroscopy. The overall activation energy of the bulk polymerization was estimated to be 112 kJ/mol. The initial polymerization rate (Rp) was expressed by Rp = k[DCPO]0.6[TMVS]1.0 at 120 °C, being closely similar to that of the conventional radical polymerization involving bimolecular termination. The polymerization system involved electron spin resonance (ESR) spectroscopically observable polymer radicals under the actual polymerization conditions. ESR‐determined apparent rate constants of propagation and termination were 13 L/mol s and 3.1 × 104 L/mol s at 120 °C, respectively. The molecular weight of the resulting poly(TMVS)s was low (Mn = 2.0–4.4 × 103), because of the high chain transfer constant (Cmtr = 4.2 × 10?2 at 120 °C) to the monomer. The bulk copolymerization of TMVS (M1) and vinyl acetate (M2) at 120 °C gave the following copolymerization parameters: rl = 1.4, r2 = 0.24, Q1 = 0.084, and e1 = +0.80. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5864–5871, 2005  相似文献   

7.
As an extension of our continuing studies concerned with the mechanistic discussion of network formation in the free‐radical crosslinking (co)polymerization of multivinyl monomers, this work refers to the skewered reactions in the crosslinking (co)polymerizations of liquid polybutadiene rubber (LBR) as an internal olefinic multivinyl monomer or crosslinker, especially focused on the competitive occurrence of both addition or skewered reaction to internal carbon–carbon (CC) double bonds and abstraction reaction of allylic hydrogens in LBR by growing polymer radical. Thus, LBR is regarded as an internal olefinic multiallyl monomer‐linked allyl groups (? CH?CH? CH2? ) with methylene units (? CH2? ). First, gelation in the polymerization of LBR was explored in detail, especially at elevated temperatures. The occurrence of intermolecular crosslinking was easier in the order LBR > LBR containing 20 mol % of 1,2‐structural units > liquid polyisoprene rubber. Then, we pursued the polymerization of LBR using dicumyl peroxide (DCPO) as typical organic peroxide used at elevated temperatures. The primary cumyloxy radical generated by the thermal decomposition of DCPO may add to CC double bond or abstract allylic hydrogen or undergo β‐scission to generate a secondary methyl radical. The initiation by the cumyloxy radical was omitted. The ratio of allylic hydrogen abstraction to β‐scission reaction was estimated; thus, only 39% of cumyloxy radical was used for the allylic hydrogen abstraction reaction. The addition of methyl radical to CC double bond was clearly observed. Finally, we pursued the intermolecular and intramolecular skewered reactions in free‐radical crosslinking LBR/vinyl pivalate copolymerizations. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
The copolymerization of propylene and disubstituted diallylsilanes [(CH2 ?CH? CH2? )2R2Si (R = CH3 or C6H5)] was investigated with isoselective and syndioselective zirconocene catalysts with methylaluminoxane as a cocatalyst. The syndioselective catalyst showed a higher reactivity for disubstituted diallylsilanes than the isoselective catalysts. Diallyldimethylsilane was incorporated into the polymer chain via cyclization insertion preferentially and formed 3,5‐disubstituted dimethylsilacyclohexane units in the polypropylene main chain. In the copolymerization with diallyldiphenylsilane, diallyldiphenylsilane was copolymerized via both cyclization insertion and 1,2‐insertion, which formed a pendant allyl group. The structures of isolated silacyclohexane units, determined by 13C NMR and distortionless enhancement by polarization transfer spectroscopy, proved that the 1,2‐insertion of diallylsilanes proceeded with enantiomorphic site control; however, the diastereoselectivity of the cyclization reaction was independent of the stereoselectivity of the catalysts used, and cis‐silacyclohexane units were mainly formed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6083–6093, 2006  相似文献   

9.
A novel dispersion copolymerization of maleic anhydride (MAn) and vinyl acetate (VAc) without adding stabilizer is developed, which gives uniform copolymer microspheres with tunable sizes. Some principal factors affecting the microspheres, such as reaction time, monomer concentration and feed ratio, reaction media, and cosolvent, were investigated. It was found that the stabilizer‐free dispersion copolymerization of MAn and VAc is a rapid process, and the particle size grows in accordance with the evolution of polymerization. The chemical composition of the copolymer microspheres was characterized by FT‐IR and 13C NMR spectroscopies. Over a wide range of monomer concentrations, the microspheres can always be formed and stably dispersed, with uniform sizes ranging from 180 nm to 740 nm. The yield of copolymer microspheres reaches a maximum at 1:1 feed ratio of MAn to VAc, owing to the alternating copolymerization between the binary monomers by a known charge‐transfer‐complex mechanism. However, the diameter of microspheres drastically increases when MAn content is enhanced. Only some specific alkyl ester solvents, such as n‐butyl acetate, isobutyl acetate, n‐amyl acetate, are desirably fit for this unique stabilizer‐free dispersion polymerization. Furthermore, we found that when some acetone is added as a cosolvent, the copolymer microspheres can still be formed, with much larger diameters. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3760–3770, 2005  相似文献   

10.
Residual vinyl groups in macroporous monosized polymer particles of poly(meta‐DVB) and poly(para‐DVB) prepared with toluene and 2‐EHA as porogens have been reacted with aluminum chloride as Friedel–Crafts catalyst with and without the presence of lauroyl chloride. In the reaction between aluminum chloride and pendant vinyl groups a post‐crosslinking by cationic polymerization takes place. A reaction occurring simultaneously is the addition of HCl to the double bonds. The progress of these reactions was studied by characterization of vinyl group conversion, pore size distribution, specific surface area, morphology, and swelling behavior. In the reaction with aluminum chloride the poly(para‐DVB) particles showed a substantially higher conversion of pendant vinyl groups than the particles made of poly(meta‐DVB) independent of porogen type. The reaction with aluminum chloride led to a reduced swelling in organic solvents and an increased rigidity of the particles prepared with toluene as porogen. This is confirmed by an increase in the total pore volume in the dry state and a change in the pore size distribution of these particles. Also in the reaction with lauroyl chloride poly(para‐DVB) particles have shown a higher conversion of pendant vinyl groups than poly(meta‐DVB) particles and the acylation was almost complete at the early stage of the reaction. The swelling in organic solvents is reduced as a result of the incorporation of acyl groups into the particles prepared with toluene as porogen. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1366–1378, 2000  相似文献   

11.
In this work, Cu(0)‐mediated radical copolymerization of vinyl acetate (VAc) and acrylonitrile (AN) was explored. The polymerization was carried out at 25°C with 2,2′‐bipyridine as ligand and dimethyl sulfoxide as solvent. The copolymerization proceeded smoothly producing moderately controlled molecular weights at low VAc feed ratios. The high VAc feed ratios generated low polymerization rate and poorly controlled molecular weights. FTIR, 1H NMR, and differential scanning calorimetry confirmed the successful obtaining of the copolymers. Based on 1H NMR spectra, the reactivity ratios of VAc and AN were calculated to be 0.003 and 1.605, respectively. This work conveyed the first example for the Cu(0)‐mediated radical polymerization of AN and VAc, wherein VAc cannot be homopolymerized by Cu(0)‐mediated radical polymerization technique. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
Various types of soluble crosslinked polymers obtained from the copolymerization of methylmethacrylate (MMA) and p-divinylbenzene (p-DVB) in the presence of a transfer agent (CBr4) have been discussed in relation to the variation of the structure during the reaction time. When [p-DVB]/[MMA] = 1.49 × 10?3 and [CBr4]/[MMA] = 1.28 × 10?4, only linear polymers (primary polymer; M n = 1.0 × 105) with pendant vinyl groups are formed intially. Considerable branched structure is attained in rather large polymers (M n = 2.5 × 105), but the number of pendant double bonds is not enough to reach the gelation. As the concentration of the transfer agent becomes high, the intermolecular crosslinking is depressed, and the formed polymers contain loops and short chains. At [p – DVB]/[MMA] = 7.43 × 10?3 and [CBr4]/[MMA] = 1.28 × 10?3, the shape of polymer with the same M n became compact gradually with increasing reaction time. These results are considered to be useful for the preparation of soluble crosslinked polymer with controlled structure.  相似文献   

13.
Living cationic polymerization of 4‐methyl‐7‐(2‐vinyloxyethoxy)coumarin (CMVE) was achieved using SnCl4 in the presence of nBu4NBr as an added salt at 0 °C. The number‐average molecular weight of the resulting polymers increased in direct proportion to the monomer conversion while retaining relatively low polydispersity. Structural analysis revealed that the resulting polymers carried pendant coumarinyl moieties. These coumarinyl moieties were crosslinked by irradiation with UV light at λmax = 366 nm, and the crosslinked sites were then cleaved by irradiation with UV light at λmax = 254 nm. The crosslinking behaviors of the polymers were studied by UV and FTIR spectroscopic measurement. PolyCMVE was soluble in dichloromethane but was found to be insoluble upon UV light irradiation. We also synthesized amphiphilic block polymers bearing coumarinyl moieties by living cationic copolymerization with an amphiphilic vinyl ether. The resulting block polymers were soluble in an aqueous medium and also formed micelle‐like aggregates. Upon UV irradiation of aqueous solutions above the critical micelle concentration, an efficient crosslinking reaction occurred. Photoinduced structural changes of these polymer aggregates in the solution state were further investigated. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Functional, degradable polymers were synthesized via the copolymerization of vinyl acetate (VAc) and 2‐methylene‐1,3‐dioxepane (MDO) using a macro‐xanthate CTA, poly(N‐vinylpyrrolidone), resulting in the formation of amphiphilic block copolymers of poly(NVP)‐b‐poly(MDO‐co‐VAc). The behavior of the block copolymers in water was investigated and resulted in the formation of self‐assembled nanoparticles containing a hydrophobic core and a hydrophilic corona. The size of the resultant nanoparticles was able to be tuned with variation of the hydrophilic and hydrophobic segments of the core and corona by changing the incorporation of the macro‐CTA as well as the monomer composition in the copolymers, as observed by Dynamic Light Scattering, Static Light Scattering, and Transmission Electron Microscopy analyses. The concept was further applied to a VAc derivative monomer, vinyl bromobutanoate, to incorporate further functionalities such as fluorescent dithiomaleimide groups throughout the polymer backbone using azidation and “click” chemistry as postpolymerization tools to create fluorescently labeled nanoparticles. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2699–2710  相似文献   

15.
The interaction of Cu2+ ions with the homopolymer poly(styrene sulfonic acid) (PSSH), as well as with the copolymers of maleic acid (MAc) with styrene sulfonic acid (SSH) or vinyl acetate (VAc), was investigated in dilute aqueous solution through turbidimetry, potentiometry, viscometry, and spectrophotometry in the visible region. Cu2+ ions were introduced either through neutralization with Cu(OH)2 of the acid form of the (co)polymers (PSSH, P(SSH‐co‐MAc) and P(VAc‐co‐MAc)) or through mixing of the sodium salt form of the (co)polymers (PSSNa, P(SSNa‐co‐MANa) and P(VAc‐co‐MANa)) with CuSO4. Turbidimetry, potentiometry, and spectrophotometry revealed that the first carboxylic group of MAc or both carboxylate groups of MANa are involved in the complexation with Cu2+ ions when neutralization with Cu(OH)2 or mixing with CuSO4 are applied, respectively. The increased values of the reduced viscosity observed mainly at the first stages of neutralization of P(VAc‐co‐MAc) with Cu(OH)2 indicate that interchain polymer‐Cu2+ complexation takes possibly place. Finally, the spectrophotometric behavior observed upon neutralization of P(SSH‐co‐MAc) with Cu(OH)2 or mixing of P(SSNa‐co‐MANa) with CuSO4 revealed that the strength of counterion binding by the sulfonate groups is, in fact, comparable with the complexation of Cu2+ ions with the carboxylate groups of MAc. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1149–1158, 2008  相似文献   

16.
Branched polystyrenes with abundant pendant vinyl functional groups were prepared via radical polymerization of an asymmetric divinyl monomer, which possesses a higher reactive styryl and a lower reactive butenyl. Employing a fast reversible addition fragmentation chain transfer (RAFT) equilibrium, the concentration of active propagation chains remained at a low value and thus crosslinking did not occur until a high level of monomer conversion. The combination of a higher reaction temperature (120 °C) and RAFT agent cumyl dithiobenzoate was demonstrated to be optimal for providing both a more highly branched architecture and a higher polymer yield. The molecular weights (Mws) increased with monomer conversions because of the controlled radical polymerization characteristic, whereas the Mw distributions broadened showing a result of the gradual increase of the degree of branching. The evolution of branched structure has been confirmed by a triple detection size exclusion chromatography (TRI‐SEC) and NMR technique. Furthermore, the double bonds in the side chains were successfully used for chemical modification reactions. 1H NMR and FTIR measurements reveal that the great mass of pendant vinyl groups were converted to the corresponding objective end‐groups. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6023–6034, 2008  相似文献   

17.
A novel phosphate monomer, Op‐(methacryloyloxymethyl)benzyl O,O‐diethyl phosphate (MDP) was synthesized by the reaction of diethyl phosphorochloridate with 1,4‐benzenedimethanol, followed by the reaction with methacryloyl chloride in the presence of triethylamine. The radical polymerization of MDP and copolymerization with methyl methacrylate were carried out in the presence of 2,2′‐azobisisobutyronitrile (3 mol %) in dimethylacetamide at 60 °C for 20 h to afford phosphate‐pendant polymers. The polymerization of glycidyl phenyl ether (GPE) was carried out with the phosphate‐pendant polymer as an initiator in the presence of ZnCl2. The polymerization did not proceed below 90 °C but rapidly proceeded above 90 °C to afford polyGPE. The phosphate‐pendant polymer served as a good thermally latent polymeric initiator. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3365–3370, 2001  相似文献   

18.
The radical ring‐opening copolymerization of 2‐isopropenyl‐3‐phenyloxirane (1) with styrene (St) was examined to obtain the copolymer [copoly(1‐St)] with a vinyl ether moiety in the main chain. The copolymers were obtained in moderate yields by copolymerization in various feed ratios of 1 and St over 120 °C; the number‐average molecular weights (Mn) were estimated to be 1800–4200 by gel permeation chromatography analysis. The ratio of the vinyl ether and St units of copoly(1‐St) was estimated with the 1H NMR spectra and varied from 1/7 to 1/14 according to the initial feed ratio of 1 and St. The haloalkoxylation of copoly(1‐St) with ethylene glycol in the presence of N‐chlorosuccinimide produced a new copolymer with alcohol groups and chlorine atoms in the side group in a high yield. The Mn value of the haloalkoxylated polymer was almost the same as that of the starting copoly(1‐St). The incorporated halogen was determined by elemental analysis. The analytical result indicated that over 88% of the vinyl ether groups participated in the haloalkoxylation. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3729–3735, 2000  相似文献   

19.
Anionic copolymerizations of 2,3,4,5,6-pentafluorostyrene (PFS) with 1,3-divinylbenzene (m-DVB) and 1,4-divinylbenzene (p-DVB) were performed by using lithium diisopropylamide as an initiator in order to synthesize the fluorine-containing linear polymer with pendant vinyl groups. The products were soluble copolymers possessing both PFS and DVB monomeric units, and the DVB monomeric unit in copolymer had pendant vinyl group. This copolymerization reaction took a much longer time than that of styrene with DVB. The copolymerization parameter of this system was examined from copolymer composition curves. In this system, m-DVB was found to be more reactive than p-DVB. The reactivity of copolymerization was largely influenced by the reactivity of active species. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
A new class of linear unsaturated polyphosphate esters based on divanillylidene cyclohexanone possessing liquid crystalline‐cum‐photocrosslinkable properties have been synthesized from 2,6‐bis[n‐hydroxyalkyloxy(vanillylidene)]cyclohexanone [n = 6,8,10] with various alkyl/aryl phosphorodichloridates in chloroform at ambient temperature. The resultant polymers were characterized by intrinsic viscosity, FT‐IR, 1H, 13C, and 31P‐NMR spectroscopy. All the polymers showed anisotropic behavior under hot stage optical polarized microscope (HOPM). The liquid crystalline textures of the polymers became more transparent with increasing spacer length. The thermal behavior of the polymers was studied by thermogravimetric analysis and differential scanning calorimetry. The Tg, Tm, and Ti of the polymers decreased with increasing flexible methylene chain. The photocrosslinking property of the polymer was investigated by UV light/UV spectroscopy; the crosslinking proceeds via 2π‐2π cycloaddition reactions of the divanillylidene exocyclic double bond of the polymer backbone. The pendant alkyloxy containing polymers show faster crosslinking than the pendant phenyloxy containing polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5215–5226, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号