首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
The free radical promoted cationic polymerization cyclohexene oxide (CHO), was achieved by visible light irradiation (λinc = 430–490 nm) of methylene chloride solutions containing thioxanthone‐fluorene carboxylic acid (TX‐FLCOOH) or thioxanthone‐carbazole (TX‐C) and cationic salts, such as diphenyliodonium hexafluorophosphate (Ph2I+PF) or silver hexafluorophosphate (Ag+PF) in the presence of hydrogen donors. A feasible initiation mechanism involves the photogeneration of ketyl radicals by hydrogen abstraction in the first step. Subsequent oxidation of ketyl radicals by the oxidizing salts yields Bronsted acids capable of initiating the polymerization of CHO. In agreement with the proposed mechanism, the polymerization was completely inhibited by 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy and di‐2,6‐di‐tert‐butylpyridine as radical and acid scavengers, respectively. Additionally polymerization efficiency was directly related to the reduction potential of the cationic salts, that is, Ag+PF (E = +0.8 V) was found to be more efficient than Ph2I+PF (E = ?0.2 V). In addition to CHO, vinyl monomers such as isobutyl vinyl ether and N‐vinyl carbazole, and a bisepoxide such as 3,4‐epoxycyclohexyl‐3′,4′‐epoxycyclohexene carboxylate, were polymerized in the presence of TX‐FLCOOH or TX‐C and iodonium salt with high efficiency. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
A new kind of polymeric chemosensor containing chiral naphthaldimine moiety in the side chain was synthesized by the reversible addition‐fragmentation chain transfer polymerization of N‐{[2‐(4‐vinylbenzyloxy)‐1‐naphthyl]‐methylene}‐(S)‐2‐phenylglycinol (VNP). The resulting polymers (PVNP) showed high selectivity for hydrogen sulfate relative to other anions including F?, Cl?, Br?, H2PO, CH3CO, and NO in tetrahydrofuran (THF) solution as judged from UV?vis, fluorescence, and circular dichroism spectrophotometric titrations. Compared with its monomer, the polymer has proven to be more attractive for detection of HSO in terms of sensitivity and reproducibility. Upon addition of the anion it gives remarkable spectral responses concomitant with detectable color change from colorless to pale yellow. Furthermore, the HSO‐induced CD or fluorescence signal can be totally reversed with addition of base and eventually recovered the initial state, leading to a reproducible molecular switch with two distinguished “on” and “off” states. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
Polymerizations of ethylene by the MgCl2/ethylbenzoate/p-cresol/AlEt3 TiCl4-AlEt3/methyl-p-toluate (CW-catalyst) have been studied. The initially formed active site concentration, [Ti] has a maximum value of 50% of total titanium at 50°C and lower values at other temperatures. The Ti decays rapidly to Ti sites with conc. ca. 10 mol %/mol Ti. The rate constants for four chain transfer processes have been obtained at 50°C: for transfer with AlEt3, k = 2.1 × 10?4 s?1 and k = 4.8 × 10?4 s?1; for transfer with monomer, k = 3.6 × 10?3 (M s)?1 and K = 8.3 × 10?3 (M s)?1; for β-hydride transfer, k = 7.2 × 10?4 s?1 and k = 4.9 × 10?4 s?1; and transfer with hydrogen, k = 4.0 × 10?3 torr1/2 s? and k = 5.1 × 10?3 torr1/2 s?1. The rate constants for the termination assisted by hydrogen is k = 1.7 (M1/2 torr1/2 S)?1. If monomer is assisting termination as was observed for propylene polymerization, then k = 7.8 (M3/2 s)?1. Values of all the rate constants can be higher or lower at other temperatures. Detailed comparisons were made with the results of propylene polymerizations. There are more than four times as many Ti active sites for ethylene polymerization than there are for stereospecific polymerization of propylene; the difference is more than a factor of two for the Ti sites. Certain rate constants are nearly the same for both monomers while others are markedly different. Some of the differences can be explained by stereoelectronic effects.  相似文献   

4.
A new chelating fiber, poly(acrylo‐amidino diethylenediamine), was synthesized based on polyacrylonitrile fibers in diethylenetriamine with the aid of AlCl3. Complex formation with CrO42– was strongly pH‐dependent, as complexes formed only in the presence of NH3+ and NH2+. In the medium pH region, both ionic and hydrogen bonds were formed between poly(acrylo‐amidino diethylenediamine) and the chromate ion, as was confirmed by means of FT‐IR spectroscopy.  相似文献   

5.
Poly(vinyl alcohol) (PVA)/poly(vinyl acetate) (PVAc) microspheres with a skin/core structure were prepared through the heterogeneous surface saponification of PVAc microspheres suspension‐polymerized. The PVA skin formed through the heterogeneous saponification was hydrogel swellable in water. In addition, to obtain monodisperse PVA/PVAc microspheres having various skin/core ratios and morphologies, the ion‐specificities to the heterogeneous saponification were investigated using SO, Cl?, NO, Br?, and I? for anions and Li+, Na+, and K+ for cations, respectively. The ions were not specific significantly to the rate of the heterogeneous saponification, while were related to the degree of saponification (DS). DSs had different values between by weight loss (DSw) and by proton nuclear magnetic resonance spectroscopy (DSNMR) measurements. The order of DSws was SO < Cl? < NO < Br? < I? for anions and K+ < Na+ < Li+ for cations, and that of DSNMRs, I? < Br? < NO < Cl? < SO for anions and Li+ < Na+ < K+ for cations. The differences in values between DSws and DSNMRs were caused by the dissolution of PVA skin and were significantly decreased for SO. The peaks at melting temperature of PVA were sharp and their areas were large for ions deswelling PVA skins.  相似文献   

6.
The synthesis and melt rheology of supramolecular poly(isobutylene) polymers bearing statistically distributed hydrogen‐bonding moieties is reported, aiming at understanding the formation of the underlying supramolecular networks for self‐healing polymers. Two different hydrogen bonds were incorporated into a poly(isobutylene) (PIB) copolymer, one based on a (weak) pyridinium/pyridine interaction, the other based on a (stronger) 2,6‐diaminotriazine/thymine interaction. A direct copolymerization based on living cationic polymerization of isobutene and the comonomers 1 , 2 , and 4 in amounts of 1 mol % lead to the copolymers PIB‐ 1 , PIB‐ 2 , and PIB‐ 4 with a content of ~1 mol % of comonomer and molecular weights ranging from ~2000 to 19,000 g mol?1 (Mw/Mn ~ 1.2–1.5). Subsequent azide/alkyne “click” chemistry enabled the attachment of 2,6‐diaminotriazine‐ and thymine‐moieties to yield the copolymers PIB‐ 5 , PIB‐ 6 , and PIB‐ 7 . Proof of the statistical incorporation of ~1 mol % of hydrogen‐bonding moieties was achieved by 1H NMR spectroscopy and matrix‐assisted laser desorption ionization measurements. The true presence of a supramolecular network in PIB‐ 1 (pyridinium/pyridine interaction) as well as with 1/1 blends of PIBs interacting via the 2,6‐diaminotriazine/thymine interaction (PIB‐ 5 /PIB‐ 6 ) was proven via the increasing plateau modulus with increasing molecular weights (5.5k, 9.9k, 12.4k, 16k, and 19k). Dynamics of the hydrogen bonds in the melt state was investigated by determining the effective cluster lifetime ( τ ) observing a clear difference in the (weaker) pyridinium/pyridine interaction ( τ ~ 1 s) to the 2,6‐ (stronger) diamintriazine/thymine interaction ( τ ~ 100 s). The so‐generated materials will be useful as a basis for self‐healing polymers, as dynamics plays a major role in such polymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
A well‐defined branched copolymer with PLLA‐b‐PS2 branches was prepared by combination of reversible addition‐fragmentation transfer (RAFT) polymerization, ring‐opening polymerization (ROP), and atom transfer radical polymerization (ATRP). The RAFT copolymerization of methyl acrylate (MA) and hydroxyethyl acrylate (HEA) yielded poly(MA‐co‐HEA), which was used as macro initiator in the successive ROP polymerization of LLA. After divergent reaction of poly(MA‐co‐HEA)‐g‐PLLAOH with divergent agent, the macro initiator, poly(MA‐co‐HEA)‐g‐PLLABr2 was formed in high conversion. The following ATRP of styrene (St) produced the target polymer, poly(MA‐co‐HEA)‐g‐(PLLA‐b‐PS2). The structures, molecular weight, and molecular weight distribution of the intermediates and the target polymers obtained from every step were confirmed by their 1H NMR and GPC measurements. DSC results show one T = 3 °C for the poly(MA‐co‐HEA), T = ?5 °C, T= 122 °C, and T = 157 °C for the branched copolymers (poly(MA‐co‐HEA)‐g‐PLLA), and T = 51 °C, T = 116 °C, and T = 162 °C for poly(MA‐co‐HEA)‐g‐(PLLA‐b‐PS2). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 549–560, 2006  相似文献   

8.
Poly(2,5‐dimethoxyaniline) (PDMA)–Ag composites were successfully obtained through the oxidative polymerization of 2,5‐dimethoxyaniline in poly(styrene sulfonic acid) with CH3SO3Ag and AgNO3 as oxidants. In situ ultraviolet–visible spectroscopy results showed that the growth rate of PDMA was strongly affected by CH3SO and NO. The coupling reaction of PDMA and NO was proposed to explain the lower growth rate of PDMA with AgNO3 as the oxidant in comparison with CH3SO3Ag. X‐ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were used to validate the proposed coupling reaction through the monitoring of the side products and oxidized state of PDMA. The results showed that there were more side products and lower oxidized states for the composite structure in the presence of NO than in the presence of CH3SO, and this agreed with the proposal. Transmission electron microscopy showed that the Ag nanoparticles had almost the same size, regardless of the anions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6624–6632, 2006  相似文献   

9.
Novel poly(3,4‐ethylenedioxythiophene) (PEDOT) polymers bearing imidazolium‐ionic liquid moieties were synthesized by electrochemical polymerizations. For this purpose, new functional monomers were synthesized having an 3,4‐ethylenedioxythiophene (EDOT) unit and an imidazolium‐ionic liquid with different anions such as tetrafluoroborate (BF), bis(trifluoromethane)sulfonimide ((CF3SO2)2N?), and hexafluorophosphate (PF). Next, polymer films were obtained by electrochemical synthesis in dicholoromethane solutions. Obtained polymers were characterized, revealing the characteristics of PEDOT in terms of electrochemical and spectroelectrochemical properties, FTIR, 1H NMR, and AFM microscopy. Interestingly, the hydrophobic character of electropolymerized films could be modified depending on the anion type. The hydrophobicity followed the trend PF > (CF3SO2)2N? > BF > pure PEDOT as determined by water contact angle measurements. Furthermore, the polymers could be dissolved in a range of polar organic solvents such as dimethylformamide, propylene carbonate, and dimethyl sulfoxide making these polymers interesting candidates for wet processing methods. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3010–3021, 2009  相似文献   

10.
A new two‐step route toward the synthesis of polymeric ionic liquid microgel particles is presented. In the first step, hydrophilic microparticles were prepared by the concentrated emulsion polymerization of the ionic liquid 1‐vinyl‐3‐ethylimidazolium bromide in the presence of small amounts of N,N‐dimethylenebisacrylamide as a crosslinking agent. In the second step, the bromide anion was exchanged in water with different anions such as BF, CF3SO, (CF3SO2)2N?, (CF3CF2SO2)2N?, and dodecylbenzenesulfonate, and this resulted in the coagulation of the microparticles, which were easily recovered by filtration. The obtained polymeric ionic liquid microparticles could be swollen in a very broad range of organic solvents, including apolar organic solvents. As an application, glucose oxidase was encapsulated inside polymeric ionic liquid microparticles, which were used in an amperometric biosensor. The response of the biosensor showed excellent values that strongly depended on the nature of the polymeric ionic liquid counteranion in the order of Br? > BF > (CF3SO2)2N?. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3958–3965, 2006  相似文献   

11.
In quest of new, single‐site catalysts for cyclic ester polymerizations, a series of mononuclear yttrium(III) complexes of N,N′‐bis(trimethylsilyl)benzamidinate ([LTMS]) and hindered N,N′‐bis‐(2,6‐dialkylaryl)toluamidinates ([LEt], aryl = Et2C6H3, and [LiPr], aryl = iPr2C6H3) were synthesized and characterized by X‐ray diffraction: LY(μ‐Cl)2Li(TMEDA) ( 1 ), LY(OC6H2tBu2Me) ( 2 ), LY(OC6H3Me2)2Li(THF)4 ( 3 ), LY(μ‐OtBu)2Li(THF) ( 4 ), LiPrY[N(SiMe2H)2]2(THF) ( 5 ), LY(THF)(Cl)(μ‐Cl)Li(THF)3 ( 6 ), and LY[N(SiMe2H)2] ( 7 ). Coordination numbers ranging from five to seven were observed, and they appeared to be controlled by the steric bulk of the supporting amidinate and alkoxide, phenoxide, or amide coligands. Complexes 2 – 5 and 7 are active catalysts for the polymerization of D,L ‐lactide (e.g., with 2 and added benzyl alcohol, 1000 equiv of D,L ‐lactide were polymerized at room temperature in less than 1 h, with polydispersities less than 1.5). The neutral complexes 2 , 5 , and 7 were more effective than the anionic complexes 3 and 4 . In addition, the presence of the more hindered amidinate ligands [LEt] and [LiPr] on yttrium‐amides slowed the polymerizations ( 7 < 5 < Y[N(SiMe2H)2]3). © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 284–293, 2001  相似文献   

12.
Decene-1 was polymerized with the CW catalyst and fractionated by precipitation technique. Light-scattering and viscometric measurements on these fractions established the relationship [η] = 5.19 × 10?3 M . The unperturbed mean square end-to-end distance is (〈R〉/M)1/2 = (6.17 ± 0.34) × 10?9. Light-scattering data is consistent with a relatively stiff molecule with length of L = 1.75 × 10?5 cm for poly(decene-1) with MW = 397,000. Its mean square radius of gyration 〈R〉 is 2.79 × 10?11 cm.2 The ratio of L2/〈R〉 = 11 is close to the theoretical ratio of 12 for this kind of macromolecule.  相似文献   

13.
The cationic ring-opening polymerization of oxepane was found to be initiated by carbon black having acylium perchlorate (CO+CIO) groups, which were introduced by the reaction of acyl chloride groups with silver perchlorate. It was confirmed that polyoxepane, i.e., poly(oxyhexamethylene), was propagated from CO+CIO groups on carbon black and effectively grafted on the surface. The rate of the polymerization and the percentage of grafting of poly(oxyhexamethylene) remarkably increased by the addition of epichlorohydrin (ECH) as a promoter: the percentage of grafting in the presence of ECH increased to about 100% with an increase in conversion. Furthermore, CO+CIO groups on carbon black have an ability to initiate the cationic ring-opening copolymerization of oxepane with ECH to give poly(oxepane-co-ECH) with various composition. The ring-opening copolymerization of oxepane with phthalic anhydride was also initiated by CO+CIO groups to give polyether ester, i.e., poly(hexamethylene phthalate) containing poly(oxyhexamethylene) sequence. In the copolymerization, polyether or polyether ester was effectively grafted from carbon black based on the propagation of these polymers from CO+CIO groups.  相似文献   

14.
Three molecules of 5-(bromoacetyl)salicylate ( 1 ) complexed to uranyl UO ion were crosslinked with branchy poly(ethylenimine) (PEI) in DMSO by alkylation of amino groups of PEI with 1, leading to the formation of UO2(Sal) PEI. Upon demetalation of UO2(Sal) PEI with HCl, apo(Sal) PEI was obtained. Based on the pH dependence of log Kf for UO2(Sal) PEI, it was concluded that each uranyl binding site in UO2(Sal) PEI or apo(Sal) PEI contains three salicylate moieties. In terms of the equilibrium constant for formation of the uranyl complex, apo(Sal) PEI was found to be comparable to or better than the previously reported effective uranophiles. In terms of the rates for the formation of the uranyl complex, however, apo(Sal) PEI was far superior to those other uranophiles. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2935–2942, 1997  相似文献   

15.
16.
Multipulse pulsed laser polymerization coupled with size exclusion chromatography (MP‐PLP‐SEC) has been employed to study the depropagation kinetics of the sterically demanding 1,1‐disubstituted monomer di(4‐tert‐butylcyclohexyl) itaconate (DBCHI). The effective rate coefficient of propagation, k, was determined for a solution of monomer in anisole at concentrations, c, 0.72 and 0.88 mol L?1 in the temperature range 0 ≤ T ≤ 70 °C. The resulting Arrhenius plot (i.e., ln k vs. 1/RT) displayed a subtle curvature in the higher temperature regime and was analyzed in the linear part to yield the activation parameters of the forward reaction. In the temperature region where no depropagation was observed (0 ≤ T ≤ 50 °C), the following Arrhenius parameters for kp were obtained (DBCHI, Ep = 35.5 ± 1.2 kJ mol?1, ln Ap = 14.8 ± 0.5 L mol?1 s?1). In addition, the k data was analyzed in the depropagatation regime for DBCHI, resulting in estimates for the associated entropy (?ΔS = 150 J mol?1 K?1) of polymerization. With decreasing monomer concentration and increasing temperature, it is increasingly more difficult to obtain well structured molecular weight distributions. The Mark Houwink Kuhn Sakurada (MHKS) parameters for di‐n‐butyl itaconate (DBI) and DBCHI were determined using a triple detection GPC system incorporating online viscometry and multi‐angle laser light scattering in THF at 40 °C. The MHKS for poly‐DBI and poly‐DBCHI in the molecular weight range 35–256 kDa and 36.5–250 kDa, respectively, were determined to be KDBI = 24.9 (103 mL g?1), αDBI = 0.58, KDBCHI = 12.8 (103 mL g?1), and αDBCHI = 0.63. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1931–1943, 2007  相似文献   

17.
The electrosynthesis of polyparaphenylene films (PPP) by oxidation of benzene or biphenyl on a Pt electrode was studied in different organic media. Film formation was possible only if the solvent had acidic properties according to the Lewis concept, and if the water content of this medium was less than 5 × 10?2M. Addition of an excess of P2O5 or CuCl2 into the medium increased the acidity and improved the adherence and the homogeneity of the films considerably. PPP films were electroactive and conductive if the electrolysis was carried out in the presence of salts containing BF, SbF, PF anions; they were insulating with perchlorate salts. IR analysis of these polymers showed highly crosslinked structures and the chains were constituted of about 10 para coupled phenyl moieties.  相似文献   

18.
(S)‐1‐Cyano‐2‐methylpropyl‐4′‐{[4‐(8‐vinyloxyoctyloxy)benzoyl]oxy}biphenyl‐ 4‐carboxylate [ (S)‐11 ] and (R)‐1‐cyano‐2‐methylpropyl‐4′‐{[4‐(8‐vinyloxyoctyloxy)benzoyl]oxy}biphenyl‐4‐carboxylate [( R)‐11 ] enantiomers, both greater than 99% enantiomeric excess, and their corresponding homopolymers, poly[ (S)‐11 ] and poly[ (R)‐11 ], with well‐defined molecular weights and narrow molecular weight distributions were synthesized and characterized. The mesomorphic behaviors of (S)‐11 and poly[ (S)‐11 ] are identical to those of (R)‐11 and poly[ (R)‐11 ], respectively. Both (S)‐11 and (R)‐11 exhibit enantiotropic SA, S, and SX (unidentified smectic) phases. The corresponding homopolymers exhibit SA and S phases. The homopolymers with a degree of polymerization (DP) less than 6 also show a crystalline phase, whereas those with a DP greater than 10 exhibit a second SX phase. Phase diagrams were investigated for four different pairs of enantiomers, (S)‐11 /( R)‐11 , (S)‐11 /poly[ (R)‐11 ], and poly[ (S)‐11 ]/poly[ (R)‐11 ], with similar and dissimilar molecular weights. In all cases, the structural units derived from the enantiomeric components are miscible and, therefore, isomorphic in the SA and S phases over the entire range of enantiomeric composition. Chiral molecular recognition was observed in the SA and SX phases of the monomers but not in the SA phase of the polymers. In addition, a very unusual chiral molecular recognition effect was detected in the S phase of the monomers below their crystallization temperature and in the S phase of the polymers below their glass‐transition temperature. In the S phase of the monomers above the melting temperature and of the polymers above the glass‐transition temperature, nonideal solution behavior was observed. However, in the SA phase the monomer–polymer and polymer–polymer mixtures behave as an ideal solution. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3631–3655, 2000  相似文献   

19.
Non‐transition metal‐catalyzed living radical polymerization (LRP) of vinyl chloride (VC) in water at 25–35 °C is reported. This polymerization is initiated with iodoform and catalyzed by Na2S2O4. In water, S2O dissociates into SO that mediates the initiation and reactivation steps via a single electron transfer (SET) mechanism. The exchange between dormant and active propagating species also includes the degenerative chain transfer to dormant species (DT). In addition, the SO2 released from SO during the SET process can add reversibly to poly(vinyl chloride) (PVC) radicals and provide additional transient dormant ~SO radicals. This novel LRP proceeds mostly by a combination of competitive SET and DT mechanisms and, therefore, it is called SET‐DTLRP. Telechelic PVC with a number‐average molecular weight (Mn) = 2,000–55,000, containing two active ~CH2? CHClI chain ends and a higher syndiotacticity than the commercial PVC were obtained by SET‐DTLRP. This PVC is free of structural defects and exhibits a higher thermal stability than commercial PVC. SET‐DTLRP of VC is carried out under reaction conditions related to those used for its commercial free‐radical polymerization. Consequently, SET‐DTLRP is of technological interest both as an alternative commercial method for the production of PVC with superior properties as well as for the synthesis of new PVC‐based architectures. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6267–6282, 2004  相似文献   

20.
Diazonium group–substituted polystyrene (PS–N) micrometer‐sized spheres with narrow distribution were prepared from highly crosslinked polystyrene particles. Then a composite sphere was prepared with the micro‐PS–N sphere as core and submicrometer‐sized poly(styrene‐methyl methacrylate‐acrylic acid) [P(S‐MMA‐AA)] colloids or nanometer‐sized SiO2 particles as shell via columbic interaction. The ionic linkages between the core and shell convert to covalent bonds in the thermal treatment process. As a result, the composite sphere becomes very stable toward polar solvents as well as toward ultrasonic treatment. A hollow SiO2 micrometer‐sized sphere then was achieved by removing the core under sintering conditions (700 °C). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4284–4288, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号