首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present paper, a numerical method is proposed for the numerical solution of a coupled system of viscous Burgers’ equation with appropriate initial and boundary conditions, by using the cubic B-spline collocation scheme on the uniform mesh points. The scheme is based on Crank–Nicolson formulation for time integration and cubic B-spline functions for space integration. The method is shown to be unconditionally stable using von-Neumann method. The accuracy of the proposed method is demonstrated by applying it on three test problems. Computed results are depicted graphically and are compared with those already available in the literature. The obtained numerical solutions indicate that the method is reliable and yields results compatible with the exact solutions.  相似文献   

2.
In this paper, we propose a wavelet-Taylor Galerkin method for the numerical solution of the Burgers equation. In deriving the computational scheme, Taylor-generalized Euler time discretization is performed prior to wavelet-based Galerkin spatial approximation. The linear system of equations obtained in the process are solved by approximate-factorization-based simple explicit schemes, and the resulting solution is compared with that from regular methods. To deal with transient advection-diffusion situations that evolve toward a convective steady state, a splitting-up strategy is known to be very effective. So the Burgers equation is also solved by a splitting-up method using a wavelet-Taylor Galerkin approach. Here, the advection and diffusion terms in the Burgers equation are separated, and the solution is computed in two phases by appropriate wavelet-Taylor Galerkin schemes. Asymptotic stability of all the proposed schemes is verified, and the L errors relative to the analytical solution together with the numerical solution are reported. AMS subject classification (2000) 65M70  相似文献   

3.
In this paper, a scheme is developed to study numerical solution of the space- and time-fractional Burgers equations with initial conditions by the variational iteration method (VIM). The exact and numerical solutions obtained by the variational iteration method are compared with that obtained by Adomian decomposition method (ADM). The results show that the variational iteration method is much easier, more convenient, and more stable and efficient than Adomian decomposition method. Numerical solutions are calculated for the fractional Burgers equation to show the nature of solution as the fractional derivative parameter is changed.  相似文献   

4.
A numerical method based on piecewise parabolic difference approximations is proposed for solving hyperbolic systems of equations. The design of its numerical scheme is based on the conservation of Riemann invariants along the characteristic curves of a system of equations, which makes it possible to discard the four-point interpolation procedure used in the standard piecewise parabolic method (PPM) and to use the data from the previous time level in the reconstruction of the solution inside difference cells. As a result, discontinuous solutions can be accurately represented without adding excessive dissipation. A local stencil is also convenient for computations on adaptive meshes. The new method is compared with PPM by solving test problems for the linear advection equation and the inviscid Burgers equation. The efficiency of the methods is compared in terms of errors in various norms. A technique for solving the gas dynamics equations is described and tested for several one-and two-dimensional problems.  相似文献   

5.
In this paper, a novel Adomian decomposition method (ADM) is developed for the solution of Burgers' equation. While high level of this method for differential equations are found in the literature, this work covers most of the necessary details required to apply ADM for partial differential equations. The present ADM has the capability to produce three different types of solutions, namely, explicit exact solution, analytic solution, and semi-analytic solution. In the best cases, when a closed-form solution exists, ADM is able to capture this exact solution, while most of the numerical methods can only provide an approximation solution. The proposed ADM is validated using different test cases dealing with inviscid and viscous Burgers' equations. Satisfactory results are obtained for all test cases, and, particularly, results reported in this paper agree well with those reported by other researchers.  相似文献   

6.
严波  张汝清 《应用数学和力学》2000,21(12):1247-1254
采用基于混合物理论的多孔介质模型,给出粘性流体饱和两相多孔介质非线性动力问题的控制场方程以及相应边值和初值问题的提法,用Galerkin加权残值法导出罚有限元公式,并给出该非线性方程组的迭代求解方法。考虑了体积分数和渗透率与变形相关的情况。用编制的有限元程序计算分析了一维多孔柱体在脉冲载荷作用下的瞬态响应,数值结果表明文中方法正确有效。  相似文献   

7.
A lattice Boltzmann method (LBM) 8-neighbor model (9-bit model) is presented to solve mathematical–physical equations, such as, Laplace equation, Poisson equation, Wave equation and Burgers equation. The 9-bit model has been verified by several test cases. Numerical simulations, including 1D and 2D cases, of each problem are shown, respectively. Comparisons are made between numerical predictions and analytic solutions or available numerical results from previous researchers. It turned out that the 9-bit model is computationally effective and accurate for all different mathematical–physical equations studied. The main benefits of the new model proposed is that it is faster than the previous existing models and has a better accuracy.  相似文献   

8.
Pointwise control of the viscous Burgers equation in one spatial dimension is studied with the objective of minimizing the distance between the final state function and target profile along with the energy of the control. An efficient computational method is proposed for solving such problems, which is based on special orthonormal functions that satisfy the associated boundary conditions. Employing these orthonormal functions as a basis of a modal expansion method, the solution space is limited to the smallest lower subspace that is sufficient to describe the original problem. Consequently, the Burgers equation is reduced to a set of a minimal number of ordinary nonlinear differential equations. Thus, by the modal expansion method, the optimal control of a distributed parameter system described by the Burgers equation is converted to the optimal control of lumped parameter dynamical systems in finite dimension. The time-variant control is approximated by a finite term of the Fourier series whose unknown coefficients and frequencies giving an optimal solution are sought, thereby converting the optimal control problem into a mathematical programming problem. The solution space obtained is based on control parameterization by using the Runge–Kutta method. The efficiency of the proposed method is examined using a numerical example for various target functions.  相似文献   

9.
This paper studies the numerical solutions of semilinear parabolic partial differential equations (PDEs) on unbounded spatial domains whose solutions blow up in finite time. There are two major difficulties usually in numerical solutions: the singularity of blow-up and the unboundedness. We propose local absorbing boundary conditions (LABCs) on the selected artificial boundaries by using the idea of unified approach (Brunner et al., SIAM J Sci Comput 31:4478–4496, (2010). Since the uniform fixed spatial meshes may be inefficient, we adopt moving mesh partial differential equation (MMPDE) method to adapt the spatial mesh as the singularity develops. Combining LABCs and MMPDE, we can effectively capture the qualitative behavior of the blow-up singularities in the unbounded domain. Moreover, the implementation of the combination consists of two independent parts. Numerical examples also illustrate the efficiency and the accuracy of the new method.  相似文献   

10.
In this article, numerical solutions of the generalized Burgers–Fisher equation are obtained using a compact finite difference method with minimal computational effort. To verify this, a combination of a sixth‐order compact finite difference scheme in space and a low‐storage third‐order total variation diminishing Runge–Kutta scheme in time have been used. The computed results with the use of this technique have been compared with the exact solution to show the accuracy of it. The approximate solutions to the equation have been computed without transforming the equation and without using linearization. Comparisons indicate that there is a very good agreement between the numerical solutions and the exact solutions in terms of accuracy. The present method is seen to be a very good alternative to some existing techniques for realistic problems. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

11.
12.
This paper aims to present complete analytic solution to heat transfer of a micropolar fluid through a porous medium with radiation. Homotopy analysis method (HAM) has been used to get accurate and complete analytic solution. The analytic solutions of the system of nonlinear ordinary differential equations are constructed in the series form. The convergence of the obtained series solutions is carefully analyzed. The velocity and temperature profiles are shown and the influence of coupling constant, permeability parameter and the radiation parameter on the heat transfer is discussed in detail. The validity of our solutions is verified by the numerical results (fourth-order Runge–Kutta method and shooting method).  相似文献   

13.
In this article, the problem of Burgers equation is presented and the homotopy perturbation method (HPM) is employed to compute an approximation to the solution of the system of nonlinear differential equations governing on the problem. Comparison is made between the HPM and Exact solutions. The obtained solutions, in comparison with the exact solutions, admit a remarkable accuracy. A clear conclusion can be drawn from the numerical results that the HPM provides highly accurate numerical solutions for nonlinear differential equations. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

14.
Burgers方程在工程上有着重要的应用,它可以用来描述湍流、车队的交通流、氏族的随机迁移、化学工程中的分离等现象,对Burgers方程求解方法的研究有着重要的现实意义.对Burgers方程求解主要是应用差分和微分两方面的方法来展开求解的,1/G展开法是近年来发展起来的求解非线性偏微分方程的一种较为有效的微分解法.采用微分方程方面的方法,利用1/G展开法对一类Burgers方程进行求解,得到了此方程的一类孤立波解和扭曲波解,同时描绘出解的图像并分析解的结构和变化趋势.  相似文献   

15.
This paper considers how the Moving Finite Element (MFE) methodapproxim ates the steady and large time solutions of a familyof linear diffusion equations in one space dimension. In particular,it is shown that any steady solution to the Moving Finite Elementequations must satisfy the stationary equations for a best approximationto the steady solution of the PDE from the manifold of free-knotlinear splines, in some problem dependent norm. For the special case of the inhomogeneous linear heat equationit is also shown that, under certain conditions, the only steadyMFE solution is the unique global best fit to the true steadysolution, in the H1 semi-norm. It is also demonstrated numericallythat these steady solutions are stable attractors. Finally,a numerical study of the large time solutions of the homogeneouslinear heat equation is undertaken and it is demonstrated thatthe MFE solutions appear to possess a rather novel temporalaccuracy property.  相似文献   

16.
In this paper, a fully coupled finite volume-finite element model for a deforming porous medium interacting with the flow of two immiscible pore fluids is presented. The basic equations describing the system are derived based on the averaging theory. Applying the standard Galerkin finite element method to solve this system of partial differential equations does not conserve mass locally. A non-conservative method may cause some accuracy and stability problems. The control volume based finite element technique that satisfies local mass conservation of the flow equations can be an appropriate alternative. Full coupling of control volume based finite element and the standard finite element techniques to solve the multiphase flow and geomechanical equilibrium equations is the main goal of this paper. The accuracy and efficiency of the method are verified by studying several examples for which analytical or numerical solutions are available. The effect of mesh orientation is investigated by simulating a benchmark water-flooding problem. A representative example is also presented to demonstrate the capability of the model to simulate the behavior in heterogeneous porous media.  相似文献   

17.
** Email: smaoui{at}mcs.sci.kuniv.edu.kw This paper deals with the sliding mode control (SMC) of theforced generalized Burgers equation via the Karhunen-Loève(K-L) Galerkin method. The decomposition procedure of the K-Lmethod is presented to illustrate the use of this method inanalysing the numerical simulations data which represent thesolutions of the forced generalized Burgers equation for viscosityranging from 1 to 100. The K-L Galerkin projection is used asa model reduction technique for non-linear systems to derivea system of ordinary differential equations (ODEs) that mimicsthe dynamics of the forced generalized Burgers equation. Thedata coefficients derived from the ODE system are then usedto approximate the solutions of the forced Burgers equation.Finally, static and dynamic SMC schemes with the objective ofenhancing the stability of the forced generalized Burgers equationare proposed. Simulations of the controlled system are givento illustrate the developed theory.  相似文献   

18.
An approach for the creation of high-accuracy versions of the collocations and least squares method for the numerical solution of the Navier-Stokes equations is proposed. New versions of up to the eighth order of accuracy inclusive are implemented. For smooth solutions, numerical experiments on a sequence of grids show that the approximate solutions produced by these versions converge to the exact one with a high order of accuracy as h → 0, where h is the maximal linear cell size of a grid. The numerical results obtained for the benchmark problem of the lid-driven cavity flow suggest that the collocations and least squares method is well suited for the numerical simulation of viscous flows.  相似文献   

19.
In this paper, the Trefftz method of fundamental solution (FS), called the method of fundamental solution (MFS), is used for biharmonic equations. The bounds of errors are derived for the MFS with Almansi’s fundamental solutions (denoted as the MAFS) in bounded simply connected domains. The exponential and polynomial convergence rates are obtained from highly and finitely smooth solutions, respectively. The stability analysis of the MAFS is also made for circular domains. Numerical experiments are carried out for both smooth and singularity problems. The numerical results coincide with the theoretical analysis made. When the particular solutions satisfying the biharmonic equation can be found, the method of particular solutions (MPS) is always superior to the MFS and the MAFS, based on numerical examples. However, if such singular particular solutions near the singular points do not exist, the local refinement of collocation nodes and the greedy adaptive techniques can be used for seeking better source points. Based on the computed results, the MFS using the greedy adaptive techniques may provide more accurate solutions for singularity problems. Moreover, the numerical solutions by the MAFS with Almansi’s FS are slightly better in accuracy and stability than those by the traditional MFS. Hence, the MAFS with the AFS is recommended for biharmonic equations due to its simplicity.  相似文献   

20.
The two-dimensional incompressible fluid flow problems governed by the velocity–vorticity formulation of the Navier–Stokes equations were solved using the radial basis integral (RBIE) equation method. The RBIE is a meshless method based on the multi-domain boundary element method with overlapping subdomains. It solves at each node for the potential and its spatial derivatives. This feature of the RBIE is advantageous in solving the velocity–vorticity formulation of the Navier–Stokes equations since the calculated velocity gradients can be used to compute the vorticity that is prescribed as a boundary condition to the vorticity transport equation. The accuracy of the numerical solution was examined by solving the test problem with known analytical solution. Two benchmark problems, i.e. the lid driven cavity flow and the thermally driven cavity flow were also solved. The numerical results obtained using the RBIE showed very good agreement with the benchmark solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号