首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Hegazy  Maha A.  Yehia  Ali M.  Mostafa  Azza A. 《Chromatographia》2011,74(11):839-845

Simple, sensitive, selective, precise, and stability-indicating thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) methods for the determination of mosapride and pantoprazole in pharmaceutical tablets were developed and validated as per the International Conference on Harmonization guidelines. The TLC method employs aluminum TLC plates precoated with silica gel 60F254 as the stationary phase and ethyl acetate/methanol/toluene (4:1:2, v/v/v) as the mobile phase to give compact spots for mosapride (R f 0.73) and pantoprazole (R f 0.45) separated from their degradation products; the chromatogram was scanned at 276 nm. The HPLC method utilizes a C18 column and a mobile phase consisting of acetonitrile/methanol/20 mM ammonium acetate (4:2:4, v/v/v) at a flow rate of 1.0 mL min−1 for the separation of mosapride (t R 11.4) and pantoprazole (t R 4.4) from their degradation products. Quantitation was achieved with UV detection at 280 nm. The same HPLC method was successfully used in performing calibrations in lower concentration ranges for both drugs in human plasma using ezetimibe as internal standard. The methods were validated in terms of accuracy, precision, linearity, limits of detection, and limits of quantification. Mosapride and pantoprazole were exposed to acid hydrolysis and then analyzed by the proposed methods. As the methods could effectively separate the drugs from their degradation products, these techniques can be employed as stability-indicating methods that have been successively applied to pharmaceutical formulations without interference from the excipients. Moreover the HPLC method was successfully used in the determination of both drugs in spiked human plasma.

  相似文献   

2.
A stability-indicating HPLC method has been developed and subsequently validated for the simultaneous determination of domperidone and pantoprazole in commercial tablets. The proposed HPLC method utilizes Phenomenex® Gemini C18 column (150 mm × 4.6 mm i.d., 5 μm) and mobile phase consisting of methanol-acetonitrile-20 mM dipotassium hydrogen phosphate and phosphoric acid buffer pH 7.0 (20:33:47, v/v/v) at a flow rate of 1.19 mL min?1. Quantitation was achieved with UV detection at 285 nm based on peak area with linear calibration curves at concentration ranges 0.5–5.0 μg mL?1 for domperidone and 1.0–10 μg mL?1 for pantoprazole (R 2 > 0.999 for both drugs). The method was validated in terms of accuracy, precision, linearity, limits of detection, limits of quantitation and robustness. This method has been successively applied to pharmaceutical formulation and no interference from the tablet excipients was found. Domperidone, pantoprazole and their combination drug product were exposed to acid, base and neutral hydrolysis, oxidation, dry heat and photolytic stress conditions and the stressed samples were analyzed by the proposed method. As the proposed method could effectively separate the drug from its degradation products, it can be employed as stability-indicating method for the determination of instability of these drugs in bulk and commercial products.  相似文献   

3.
Two sensitive and selective stability-indicating methods were developed for the determination of the antibiotic cefpirome sulfate in bulk powder, pharmaceutical formulation and in presence of its acid, alkaline, photo- and oxidative degradation products. Method A was based on HPLC separation of cefpirome sulfate in the presence of its degradation products on a reversed phase column C18, 250 × 4.6 mm, 5-μm particle size and mobile phase consisting of 0.1 M disodium hydrogen phosphate dihydrate pH 3.9 adjusted with phosphoric acid–acetonitrile (85:15, v/v). Quantitation was achieved with UV detection at 270 nm. The linear calibration curve was in the range 5.0–50.0 μg mL?1. Method B was based on reversed phase TLC separation of the cited drug in the presence of its degradation products followed by densitometric measurement of the intact drug at 270 nm. The separation was carried out using disodium hydrogen phosphate dihydrate 2.0 g %w/v, at pH 3.5 adjusted with phosphoric acid–acetone (15:10, v/v) as a developing system. The calibration curve was in the range of 1.0–10.0 μg/spot. The HPLC method was used to study the kinetic of cefpirome sulfate acid degradation. The results obtained were statistically analyzed and compared with those obtained by applying the official Japanese method.  相似文献   

4.
A sensitive, selective, precise, and stability-indicating HPTLC method for analysis of moclobemide in the bulk drug and in formulations has been established and validated. Aluminium TLC plates precoated with silica gel 60 F254 were used with benzene–methanol–40% ammonia 7:3:0.1 (v/v) as mobile phase. Densitometric analysis was performed in absorbance mode at 238 nm. Compact bands were obtained for moclobemide (R F 0.67 ± 0.02; n = 6). The drug was subjected to acidic and alkaline hydrolysis, oxidation, dry heat treatment, and photodegradation. The drug undergoes degradation under acidic, basic, and oxidising conditions. The degradation products were well resolved from the pure drug with significantly different R F values, so the method can be regarded as stability-indicating. Response to moclobemide was a linear function of amount in the range 50–600 ng per band, with a correlation coefficient, r 2, of 0.9967 ± 0.51. LOD and LOQ, determined experimentally, were 10 and 30 ng per band, respectively. Statistical analysis proves the method is repeatable and specific for analysis of moclobemide. The method was used to investigate the kinetics of alkaline degradation. The Arrhenius plot was constructed and the activation energy calculated.  相似文献   

5.
A simple, sensitive, selective, precise and stability-indicating thin-layer chromatographic method for determination of dutasteride both as a bulk drug and as pharmaceutical tablets was developed and validated as per the International Conference on Harmonization guidelines. The method employed thin-layer chromatography aluminium plates precoated with silica gel 60F254 as the stationary phase and the mobile phase consisted of acetonitrile:methanol:dichloromethane in the ratio of 2.0:1.0:2.0, v/v/v. This solvent system was found to give compact spots for dutasteride (R f value of 0.64 ± 0.02). Densitometric analysis of dutasteride was carried out in the absorbance mode at 244 nm. The linear regression analysis data for the calibration plots showed good linear relationship with r = 0.9943 with respect to peak area in the concentration range of 100–600 ng per band. The method was validated for precision, accuracy, ruggedness and recovery. The limits of detection and quantitation were 7.54 and 22.85 ng per band, respectively. Dutasteride was subjected to acid and alkali hydrolysis, oxidation, photo degradation, dry heat and wet heat treatment. The drug undergoes degradation under acidic, basic conditions, photolytic, oxidative and upon wet and dry heat treatment. The degraded products were well separated from the pure drug. The statistical analysis proves that the developed method for quantification of dutasteride as bulk drug and from pharmaceutical tablets is reproducible and selective. As the method could effectively separate the drug from its degradation products, it can be employed as stability-indicating.  相似文献   

6.
Simple, sensitive high-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC) methods are developed for the quantitative estimation of rabeprazole and mosapride in their combined pharmaceutical dosage forms. In HPLC, rabeprazole and mosapride are chromatographed using 0.01M 6.5 pH ammonium acetate buffer-methanol-acetonitrile (40:20:40, v/v, pH 5.70+/-0.02) as the mobile phase at a flow rate of 1.0 mL/min. In TLC, the mobile phase is ethyl acetate-methanol-benzene (2:0.5:2.5, v/v). Both the drugs are scanned at 276 nm. The retention times of rabeprazole and mosapride are found to be 4.93+/-0.01 and 9.79+/-0.02, respectively. The Rf values of rabeprazole and mosapride are found to be 0.42+/-0.02 and 0.61+/-0.02, respectively. The linearities of rabeprazole and mosapride are in the range of 400-2000 ng/mL and 300-1500 ng/mL, respectively, for HPLC; in TLC, the linearities of rabeprazole and mosapride are in the range of 400-1200 ng/spot and 300-900 ng/spot, respectively. The limit of detection is found to be 97.7 ng/mL for rabeprazole and 97.6 ng/mL for mosapride in HPLC; in TLC the limit of detection is found to be 132.29 ng/spot for rabeprazole and 98.25 ng/spot for mosapride. The proposed methods can be applied to the determination of rabeprazole and mosapride in combined pharmaceutical products.  相似文献   

7.

A novel stability-indicating LC assay method was developed and validated for quantitative determination of olmesartan in bulk drugs and in pharmaceutical dosage form in the presence of degradation products generated from forced degradation studies. An isocratic, reversed phase LC method was developed to separate the drug from the degradation products, using an Ace5-C18 (250 mm × 4.6 mm, 5 μm) column, and 50 mM ammonium acetate (pH-5.5 by acetic acid) and acetonitrile (70:30 v/v) as a mobile phase. The detection was carried out at the wavelength of 235 nm. The olmesartan was subjected to stress conditions of hydrolysis (acid, base), oxidation, photolysis and thermal degradation. Degradation was observed for olmesartan in acid, base and in 30% H2O2 conditions. The drug was found to be stable in the other stress conditions attempted. The degradation products were well resolved from the main peak. The percentage recovery of olmesartan ranged from (99.89 to 100.95%) in pharmaceutical dosage form. The developed method was validated with respect to linearity, accuracy (recovery), precision, specificity and robustness. The forced degradation studies prove the stability-indicating power of the method.

  相似文献   

8.
A stability-indicating high-performance thin-layer chromatography (HPTLC) method was developed and validated for simultaneous determination of steroidal hormones levonorgestrel and ethinyloestradiol both in bulk drug and in low-dosage oral contraceptives. Optimization of conditions for the spectrodensitometric procedure was reached by eluting HPTLC silica gel plates in a 10 cm × 10 cm horizontal chamber. The solvent system consisted of hexane-chloroform-methanol (1.0:3.0:0.25, v/v/v). This system was found to give compact, dense and typical peaks for both levonorgestrel (Rf = 0.65 ± 0.03) and ethinyloestradiol (Rf = 0.43 ± 0.02). Densitometric analysis of the drugs was carried out in the reflectance mode at 225 nm by using a computer controlled densitometric scanner. The calibration curves of levonorgestrel and ethinyloestradiol were linear in the range of 200-800 and 40-160 ng per spot, respectively. The method was validated for precision, robustness and recovery. As the proposed method can effectively separate the drugs from their degradation products, it can be employed as a stability-indicating method.  相似文献   

9.
Accurate, sensitive, and precise high performance thin layer chromatographic (HPTLC) methods were developed and validated for the determination of sumatriptan and zolmitriptan in presence of their degradation products. Sumatriptan was separated from its degradation products and analyzed on TLC silica gel 60 F254 plates using chloroform–ethyl acetate–methanol–ammonia (4:3:3:0.1, v/v) as a developing system followed by densitometric measurement of the bands at 228 nm. Zolmitriptan was determined using chloroform–ethyl acetate–methanol–ammonia (3:3:3:1, v/v) as a developing system followed by densitometric measurement at 222 nm. The methods were validated over a range of 0.5–4 μg/spot for sumatriptan and 0.5–3 μg/spot for zolmitriptan. The proposed methods were successfully applied for the determination of the studied drugs in bulk powder and in their pharmaceutical formulations.  相似文献   

10.
Reversed phase‐high performance liquid chromatography (RP‐HPLC), thin layer chromatography (TLC) densitometry and first derivative spectrophotometry (1D) techniques are developed and validated as a stability‐indicating assay of ezetimibe in the presence of alkaline induced degradation products. RP‐HPLC method involves an isocratic elution on a Phenomenex Luna 5μ C18 column using acetonitrile: water: glacial acetic acid (50:50:0.1 v/v/v) as a mobile phase at a flow rate of 1.5 mL/min. and a UV detector at 235 nm. TLC densitometric method is based on the difference in Rf‐values between the intact drug and its degradation products on aluminum‐packed silica gel 60 F254 TLC plates as stationary phase with isopropanol: ammonia 33% (9:1 v/v) as a developing mobile phase. On the fluorescent plates, the spots were located by fluorescence quenching and the densitometric analysis was carried out at 250 nm. Derivative spectrophotometry, the zero‐crossing method, ezetimibe was determined using first derivative at 261 nm in the presence of its degradation products. Calibration graphs of the three suggested methods are linear in the concentration ranges 1–10 mcg/mL, 0.1–1 mg/mL and 1–16 mcg/mL with a mean percentage accuracy of 99.05 ± 0.54%, 99.46 ± 0.63% and 99.24 ± 0.82% of bulk powder, respectively. The three proposed methods were successfully applied for the determination of ezetimibe in raw material and pharmaceutical dosage form; the results were statistically analyzed and compared with those obtained by the reported method. Validation parameters were determined for linearity, accuracy and precision; selectivity and robustness and were assessed by applying the standard addition technique.  相似文献   

11.
Iron nanocomposite adsorbent was synthesized by green technology with 90% yield. The surface was amorphous and irregular in nature. The iron nanocomposite adsorbent was applied in solid phase membrane microtip extraction (SPMMTE) procedure for the extraction of ibuprofen, pantoprazole, and itopride drugs. SPMMTE was used to extract these drugs from plasma. SunShell C18 column was used with phosphate buffer (10 mM, pH 7.0):acetonitrile (70:30, v/v) as mobile phase at 1.0 mL min?1 flow rate with a detection at 220 nm. The retention factor values were 2.23, 3.25, and 5.38. The values of separation and resolution factors were 1.41 and 1.65, and 5.00 and 12.14, respectively. The percentage recoveries were ibuprofen (90%), pantoprazole (80%), and itopride (75%) in standard solution. The reported SPMMTE and HPLC methods were fast, inexpensive, specific, precise, accurate, and robust for the analysis of the reported drugs. These results indicated that the reported nanocomposite adsorbent-based SPMMTE and HPLC methods may be used to monitor the reported drugs in any unknown matrices.  相似文献   

12.
A stability-indicating liquid chromatographic method was developed and validated for quantitative determination of olmesartan medoxomil (OLM) in coated tablets in the presence of degradation products generated under stress conditions. An isocratic LC separation was performed using a Phenomenex RP-18 column using a mobile phase consisting of water:triethylamine:acetonitrile (60:0.3:40 v/v/v, pH adjusted to 6.3 with phosphoric acid). The flow rate was 1.2 mL min?1 and the detection was achieved with a photodiode array detector set at 257 nm. The response was linear over a range of 10.0 to 30.0 μg mL?1 (r = 0.9999). The specificity and stability-indicating capability of the method was verified subjecting the reference substance and drug product to hydrolytic, oxidative, photolytic, and thermal stress conditions. The method showed a good and consistent recovery (100.2%) with low intra- and inter-day relative standard deviation (RSD) (≤1.0%). A considerable degradation occurred in all stress conditions and the degradation product was well resolved from the main peak. There was no interference of the excipients in the determination of the active pharmaceutical ingredient. Thus, the proposed method was found to be stability-indicating and can be used for routine analysis for quantitative determination of OLM in coated tablets without the interference of major degradation products.  相似文献   

13.
Three stability-indicating assay methods were developed for the determination of tropisetron in a pharmaceutical dosage form in the presence of its degradation products. The proposed techniques are HPLC, TLC, and first-derivative spectrophotometry (1D). Acid degradation was carried out, and the degradation products were separated by TLC and identified by IR, NMR, and MS techniques. The HPLC method was based on determination of tropisetron in the presence of its acid-induced degradation product on an RP Nucleosil C18 column using methanol-water-acetonitrile-trimethylamine (65 + 20 + 15 + 0.2, v/v/v/v) mobile phase and UV detection at 285 nm. The TLC method was based on the separation of tropisetron and its acid-induced degradation products, followed by densitometric measurement of the intact spot at 285 nm. The separation was carried out on silica gel 60 F254 aluminum sheets using methanol-glacial acetic acid (22 + 3, v/v) mobile phase. The 1D method was based on the measurement of first-derivative amplitudes of tropisetron in H2O at the zero-crossing point of its acid-induced degradation product at 271.9 nm. Linearity, accuracy, and precision were found to be acceptable over concentration ranges of 40-240 microg/mL, 1-10 microg/spot, and 6-36 micro/mL for the HPLC, TLC, and 1D methods, respectively. The suggested methods were successfully applied for the determination of the drug in bulk powder, laboratory-prepared mixtures, and a commercial sample.  相似文献   

14.
A simple, stability-indicating high-performance thin-layer liquid chromatographic (HPTLC) method for analysis of minocycline was developed and validated. The densitometric analysis was carried out at 345 nm using methanol-acetonitrile-isopropyl alcohol-water (5:4:0.5:0.5, v/v/v/v) as mobile phase.The method employed TLC aluminium plates pre-coated with silica gel 60F-254 as the stationary phase. To achieve good result, plates were sprayed with a 10% (w/v) solution of disodium ethylene diaminetetraacetic acid (EDTA), the pH of which was adjusted to 9.0. Compact spots of minocycline were found at Rf = 0.30 ± 0.02. For proposed procedure, linearity (r = 0.9997), limit of detection (3.7 ng spot−1), recovery (99.23-100.16%), and precision (% R.S.D. ≤ 0.364) was found to be satisfactory. The drug undergoes acidic and basic degradation, oxidation and photodegradation. All the peaks of degradation products were well resolved from the pure drug with significantly different Rf values. The acidic and alkaline degradation kinetics of minocycline, evaluated using this method, is found to be of first order.  相似文献   

15.
《Analytical letters》2012,45(10):1909-1913
Abstract

There are many different methods of quinolones determination. The most often used method of quinolones analysis is liquid chromatography. In this work some selected quinolones (cinoxacin, pipemidic acid) and fluoroquinolones (ofloxacin, pefloxacin) were separated with thin-layer chromatography (TLC). The two different mobile phases were used as follows: buffer solution (pH = 5.5)-methanol, 40:10 (v/v) and acetonitrile-water-acetic acid, 6:40:4 (v/v/v), respectively, for quinolones and fluoroquinolones. The following chromatographic parameters were calculated for these separations: RF, ?RF, RM, and RS. The possibility of qualitative determination of cinoxacin, pipemidic acid, ofloxacin, and pefloxacin using TLC was shown.  相似文献   

16.
A new stability-indicating high-performance liquid chromatographic method has been developed for simultaneous analysis of metformin hydrochloride (MET) and sitagliptin phosphate (SIT) in pharmaceutical dosage forms. Chromatographic separation was achieved on a C8 column. The mobile phase was methanol–water 45:55 % (v/v) containing 0.2 % (w/v) n-heptanesulfonic acid and 0.2 % (v/v) triethylamine; the pH was adjusted to 3.0 with orthophosphoric acid. The flow rate was 1 mL min?1 and the photodiode-array detection wavelength was 267 nm. The linear regression coefficients for metformin and sitagliptin were 0.9998 and 0.9996 in the concentration ranges 50–450, and 10–150 μg mL?1, respectively. The relative standard deviations for intra and inter-day precision were below 1.5 %. The drugs were subjected to a variety of stress conditions—acidic and basic hydrolysis, and oxidative, photolytic, neutral, and thermal degradation. The products obtained from photolytic degradation were similar to those from neutral hydrolytic degradation and different from produced by acidic and basic hydrolysis. The method resulted in detection of 15 degradation products (D1–D15); among these, the structures of D1, D3, D9, and D13 were identified. The respective mass balance for MET and SIT was found to be close to 97.60 and 99.12 %. The specificity of the method is suitable for a stability-indicating assay.  相似文献   

17.
Simvastatin and ezetimibe are used to treat hyperlipidemia. A simple, selective and stability-indicating HPTLC method has been established for analysis of simvastatin and ezetimibe. The method has been validated so that both drugs can routinely be analyzed simultaneously. The method uses aluminum-backed silica gel 60F254 TLC plates as stationary phase with n-hexane–acetone 6:4 (v/v) as mobile phase. Densitometric analysis of both drugs was carried out in absorbance mode at 234 nm. This system was found to give compact bands for simvastatin and ezetimibe (R F 0.39 ± 0.05 and 0.50 ± 0.05, respectively). Linear relationships were obtained between response and amount of drug in the range 200–1,600 ng per band with high correlation coefficients (r 2 = 0.9917 ± 0.0018 for simvastatin and r 2 = 0.9927 ± 0.0021 for ezetimibe). The method was validated for precision, robustness, and recovery. The limits of detection and quantitation were 25 and 150 ng per band, respectively. Simvastatin and ezetimibe were subjected degradation by acid, pH 6.8 phosphate buffer, oxidation, dry heat, and wet heat. The degradation products were well resolved from the pure drug with significantly different R F values. Because the method could effectively separate the drug from its degradation products, it can be used for stability-indicating analysis.  相似文献   

18.

The present study describes the degradation of gemifloxacin mesylate under different International Conference on Harmonization prescribed stress conditions (hydrolysis, oxidation, dry and wet heat and photolysis) and application of a specific and selective stability-indicating reversed-phase liquid chromatography assay. Separation of drug and degradation products was successfully achieved on a HiQ-SiL C8 column using 10 mM potassium dihydrogen orthophosphate (pH adjusted to 3.0 with o-phosphoric acid)–acetonitrile (65:35, v/v) at a flow rate of 1 mL min−1 and detection at 273 nm.

  相似文献   

19.
The degradation kinetics of forskolin in aqueous solution was investigated qualitatively and quantitatively. Two degradation products were isolated and identified as isoforskolin and forskolin D by liquid chromatography–tandem mass spectrometry (LC–MS/MS) and nuclear magnetic resonance (NMR) spectroscopy. A stability-indicating high-performance liquid chromatography (HPLC) method was developed and validated for the quantification of forskolin and its degradation products. Chromatographic separation was performed on a Luna C18 column with acetonitrile–water (65:35, v/v) as the mobile phase. The flow rate was kept at 1 mL/min, and the detection wavelength was 210 nm. The kinetic study of forskolin was carried out in aqueous solutions of pH 1.5–8.5 at 37, 50, 65, and 80°C. The degradation rate of forskolin increases with increasing temperature. Forskolin is relatively stable in the pH range 3.5–6.5, but its stability decreases when the pH is outside this range. In the pH range 6.5–8.5, the forskolin degradation follows pseudo-first-order kinetics. Based on the structural identification and quantitative analysis of the degradation products, a possible pathway for forskolin degradation is proposed. Forskolin can be converted to isoforskolin rapidly, and both forskolin and isoforskolin can further decompose to forskolin D.  相似文献   

20.
A simple, sensitive, selective, precise and stability-indicating high-performance thin-layer chromatographic (HPTLC) method for densitometric determination of moxifloxacin both as a bulk drug and from pharmaceutical formulation was developed and validated as per the International Conference on Harmonization (ICH) guidelines. The method employed TLC aluminium plates pre-coated with silica gel 60F-254 as the stationary phase and the mobile phase consisted of n-propanol-ethanol-6 M ammonia solution (4:1:2, v/v/v). Densitometric analysis of moxifloxacin was carried out in the absorbance mode at 298 nm. Compact spots for moxifloxacin were found at Rf value of 0.58 ± 0.02. The linear regression analysis data for the calibration plots showed good linear relationship with r = 0.9925 in the working concentration range of 100-800 ng spot−1. The method was validated for precision, accuracy, ruggedness, robustness, specificity, recovery, limit of detection (LOD) and limit of quantitation (LOQ). The LOD and LOQ were 3.90 and 11.83 ng spot−1, respectively. Drug was subjected to acid and alkali hydrolysis, oxidation, dry heat, wet heat treatment and photodegradation. All the peaks of degradation products were well resolved from the standard drug with significantly different Rf values. Statistical analysis proves that the developed HPTLC method is reproducible and selective. As the method could effectively separate the drug from its degradation products, it can be employed as stability-indicating one. Moreover, the proposed HPTLC method was utilized to investigate the kinetics of the acidic and alkaline degradation processes at different temperatures. Arrhenius plot was constructed and apparent pseudo-first-order rate constant, half-life and activation energy were calculated. In addition the pH-rate profile for degradation of moxifloxacin in constant ionic strength buffer solutions within the pH range 1.2-10.8 was studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号