首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
This paper investigates the effects of surface roughness on the flow past a circular cylinder at subcritical to transcritical Reynolds numbers. Large eddy simulations of the flow for sand grain roughness of size k/D = 0.02 are performed (D is the cylinder diameter). Results show that surface roughness triggers the transition to turbulence in the boundary layer at all Reynolds numbers, thus leading to an early separation caused by the increased momentum deficit, especially at transcritical Reynolds numbers. Even at subcritical Reynolds numbers, boundary layer instabilities are triggered in the roughness sublayer and eventually lead to the transition to turbulence. The early separation at transcritical Reynolds numbers leads to a wake topology similar to that of the subcritical regime, resulting in an increased drag coefficient and lower Strouhal number. Turbulent statistics in the wake are also affected by roughness; the Reynolds stresses are larger due to the increased turbulent kinetic energy production in the boundary layer and separated shear layers close to the cylinder shoulders.  相似文献   

2.
 Temperature changes have a significant influence on the measurements of Reynolds stresses in turbulent boundary layers. As compared to the spanwise velocity fluctuations the streamwise turbulence intensity is especially sensitive to temperature deviations. Although this is a general statement its importance is clearly elucidated in a shear-free turbulence near a solid wall, since the mixing due to turbulence production is minimized in this flow. A consequence of temperature influence on hot-wire measurements is that frictional heating from the wall has produced contradictory results in different experiments on shear-free turbulence. In the current paper, measurements of streamwise and spanwise turbulence intensities have been conducted at different wall temperatures, thereby simulating the contradictory results mentioned above. A simple model has been developed showing that the turbulence intensities are affected by both the rms. value of the temperature fluctuations and the correlation between fluctuating temperature and velocity. These correlations are measured and the developed model is used to explain deviations in earlier measurements on shear-free turbulence. Moreover, the individual magnitudes of the two correlations in the temperature correction are estimated and their individual importance is discussed. Received: 17 February 1997 / Accepted: 18 January 1998  相似文献   

3.
Axisymmetrically stable turbulent Taylor vortices between two concentric cylinders are studied with respect to the transition from vortex to wall driven turbulent production. The outer cylinder is stationary and the inner cylinder rotates. A low Reynolds number turbulence model using the kω formulation, facilitates an analysis of the velocity gradients in the Taylor–Couette flow. For a fixed inner radius, three radius ratios 0.734, 0.941 and 0.985 are employed to identify the Reynolds number range at which this transition occurs. At relatively low Reynolds numbers, turbulent production is shown to be dominated by the outflowing boundary of the Taylor vortex. As the Reynolds number increases, shear driven turbulence (due to the rotating cylinder) becomes the dominating factor. For relatively small gaps turbulent flow is shown to occur at Taylor numbers lower than previously reported. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Mean flow and turbulence measurements have been made in a boundary layer which grows first on a flat' wall and then on a convex wall of radius of curvature approximately 100 times the boundary layer thickness. The turbulence data include profiles of the four non-zero components of the Reynolds stress tensor and three triple velocity products obtained at five stream-wise positions. A number of measurements were also made for comparison in the boundary layer on a flat wall under the same conditions. The effects of convex curvature are to reduce turbulent intensities, shear stress and wall friction by approximately 10% of their plane flow values; the triple velocity products are halved in the curved layer. The measurements supplement the small quantity of previously published data available for testing mathematical models of turbulence. The results show the same general trends that have been observed in earlier investigations but there are significant differences in detail, notably in respect of levels of the normal stresses.  相似文献   

5.
Laser Doppler velocity measurements are carried out in a turbulent boundary layer subjected to concentrated wall suction (through a porous strip). The measurements are taken over a longitudinal distance of 9× the incoming boundary layer thickness ahead of the suction strip. The mean and rms velocity profiles are affected substantially by suction. Two-point measurements show that the streamwise and wall-normal autocorrelations of the streamwise velocity are reduced by suction. It is found that suction alters the redistribution of the turbulent kinetic energy k between its components. Relative to the no-suction case, the longitudinal Reynolds stress contributes more to k than the other two normal Reynolds stresses; in the outer region, its contribution is reduced which suggests structural changes in the boundary layer. This is observed in the anisotropy of the Reynolds stresses, which depart from the non-disturbed boundary layer. With suction, the anisotropy level in the near-wall region appears to be stronger than that of the undisturbed layer. It is argued that the mean shear induced by suction on the flow is responsible for the alteration of the anisotropy. The variation of the anisotropy of the layer will make the development of a turbulence model quite difficult for the flow behind suction. In that respect, a turbulence model will need to reproduce well the effects of suction on the boundary layer, if the model is to capture the effect of suction on the anisotropy of the Reynolds stresses.  相似文献   

6.
The multi-scale structures of turbulent wakes generated by three kinds of bluff body, i.e. circular cylinder, square cylinder and compound of cylinder and square (CS) cylinders, have been experimentally investigated in this paper. Firstly, the instantaneous velocity fields and vorticity were measured by the high-speed PIV technique in a circulating water channel. The instantaneous streamlines and corresponding normalized vorticity contours are obtained at a Reynolds number of 5600. Then one- and two-dimensional wavelet multi-resolution technique was used to analyze the instantaneous velocities and vorticity measured by the high-speed PIV. The turbulence structures were separated into a number of subsets based on their central frequencies, which are linked with the turbulence scales. The instantaneous vorticity and Reynolds shear stresses of various scales were examined and compared between the three generators. It is found that the large-scale turbulent structure makes the largest contribution to the vorticity and Reynolds shear stresses for the three wake generators and exhibits a strong dependence upon the initial conditions or the wake generators. The large-scale vorticity and the sizes of vortex in the circular and square cylinders are larger than those in the CS cylinder wake. The contributions to the Reynolds shear stresses from the large-scale turbulent structures account for 90-96% to the measured maximum Reynolds shear stresses for the three wakes. However, the small-scale structures make less contribution to the vorticity and Reynolds shear stresses.  相似文献   

7.
Large-eddy simulations (LES) are used to investigate the modifications of wake dynamics and turbulence characteristics behind a circular cylinder placed near a wall for varying gap-to-diameter (G/D) ratios (where G signifies the gap between the wall and the cylinder, and D the cylinder diameter). The three-dimensional (3-D), time-dependent, incompressible Navier–Stokes equations with a dynamic subgrid-scale model are solved using a symmetry-preserving finite-difference scheme of second-order spatial and temporal accuracy. The immersed boundary (IB) method is employed to impose the no-slip boundary condition on the cylinder surface. Flow visualizations along with turbulence statistics are presented to gain insight into the flow structures that are due to interaction between the shear layers and the approaching boundary layer. Apart from the vortex shedding mechanism, the paper illustrates the physics involving the shear layer transition, stretching, breakdown and turbulence generation, either qualitatively or quantitatively, in the presence of a wall for a Reynolds number of Re=1440 (based on D and the inlet free-stream velocity U).  相似文献   

8.
A detailed experimental study is performed on the separated flow structures around a low aspect-ratio circular cylinder (pin-fin) in a practical configuration of liquid cooling channel. Distinctive features of the present arrangement are the confinement of the cylinder at both ends, water flow at low Reynolds numbers (Re = 800, 1800, 2800), very high core flow turbulence and undeveloped boundary layers at the position of the obstacle. The horseshoe vortex system at the junctions between the cylinder and the confining walls and the near wake region behind the obstacle are deeply investigated by means of Particle Image Velocimetry (PIV). Upstream of the cylinder, the horseshoe vortex system turns out to be perturbed by vorticity bursts from the incoming boundary layers, leading to aperiodical vortex oscillations at Re = 800 or to break-away and secondary vorticity eruptions at the higher Reynolds numbers. The flow structures in the near wake show a complex three-dimensional behaviour associated with a peculiar mechanism of spanwise mass transport. High levels of free-stream turbulence trigger an early instabilization of the shear layers and strong Bloor–Gerrard vortices are observed even at Re = 800. Coalescence of these vortices and intense spanwise flow inhibit the alternate primary vortex shedding for time periods whose length and frequency increase as the Reynolds number is reduced. The inhibition of alternate vortex shedding for long time periods is finally related to the very large wake characteristic lengths and to the low velocity fluctuations observed especially at the lowest Reynolds number.  相似文献   

9.
The effect of Reynolds number on a turbulent far-wake   总被引:1,自引:0,他引:1  
The turbulent far-waked generated by a circular cylinder is investigated for two values (1350 and 4600) of the Reynolds number Re θ (based on the free stream velocity and the momentum thickness). Two arrays of sixteen X-wires, eight in the (x,?y)-plane and eight in the (x,?z)-plane, are used to capture the main features of the large-scale motion in two orthogonal planes. Both the magnitude of the measured Reynolds stresses and the size of the two-point velocity and vorticity correlation contours increase with Reynolds number. The probability density function and spectra of the velocity signals also exhibit differences with Re θ. A comparison of centerline turbulence intensities with those in the literature suggests that the Reynolds number dependence may disappear for Re θ?5000.  相似文献   

10.
The elliptic blending approach is used in order to modify an Explicit Algebraic Reynolds Stress Model so as to reproduce the correct near wall behaviour of the turbulent stresses. The anisotropy stress tensor is expressed as a linear combination of tensor bases whose coefficients are sensitised to the non-local wall-blocking effect through the elliptic blending parameter γ. This parameter is obtained from a separate elliptic equation. The model does not use the distance from the wall thus it can be easily applied to complex geometries. It is validated against detailed DNS data for mean and turbulence quantities for the case of flow and heat transfer between parallel flat plates at three Reynolds numbers as well as against experimental data for the flow in a backward facing step at Re H = 28,000. The comparison with DNS results or experiments is quite satisfactory and shows the validity of the approach.  相似文献   

11.
This paper presents measurements in the turbulent wake of a circular cylinder rotating with its axis normal to the free-stream velocity; in other words, the axis of rotation was parallel to the streamwise direction. All three mean velocities and six Reynolds stresses were obtained at three positions downstream of the cylinder, with and without rotation of the free-stream. Most emphasis is given to the latter results because of the better flow quality. The ratio of the circumferential velocity of the cylinder to the free-stream velocity — the swirl number — had a maximum value of 0.6. Measurements for two combinations of the free-stream and angular velocities showed the velocity deficit in the wake to be a multi-valued function of the swirl number, implying that the rotation affected the separation of the cylinder's boundary layer in a complex manner. In the turbulent wake, the rotation did not significantly alter the magnitudes of the normal stresses, but caused large changes to the shape of the profiles of the axial and cross-stream normal stresses. Eventually, the primary (cross-stream) shear stress became almost entirely positive, but there was no corresponding change to the (cross-stream) gradient of the streamwise mean velocity. Despite these alterations to the turbulence, the rotationally-activated generation terms in the Reynolds transport equations never dominated the terms that are common to the wakes of rotating and non-rotating cylinders.This work was supported by the Australian Research Council. Most of the data acquisition software was written by Mr J. J. Smith.  相似文献   

12.
The present paper addresses experimental studies of Reynolds number effects on a turbulent boundary layer with separation, reattachment, and recovery. A momentum thickness Reynolds number varies from 1,100 to 20,100 with a wind tunnel enclosed in a pressure vessel by varying the air density and wind tunnel speed. A custom-built, high-resolution laser Doppler anemometer provides fully resolved turbulence measurements over the full Reynolds number range. The experiments show that the mean flow is at most a very weak function of Reynolds number while turbulence quantities strongly depend on Reynolds number. Roller vortices are generated in the separated shear layer caused by the Kelvin–Helmholtz instability. Empirical Reynolds number scalings for the mean velocity and Reynolds stresses are proposed for the upstream boundary layer, the separated region, and the recovery region. The inflectional instability plays a critical role in the scaling in the separated region. The near-wall flow recovers quickly downstream of reattachment even if the outer layer is far from an equilibrium state. As a result, a stress equilibrium layer where a flat-plate boundary layer scaling is valid develops in the recovery region and grows outward moving downstream.  相似文献   

13.
14.
提出了湍流边界层的一种简单、快速计算方法, 用以求解强吸气作用下旋转圆筒表面边界层流动. 首先, 理论分析了同心圆筒间的旋转流体运动, 外筒静止、内筒旋转且为多孔吸气条件. 强吸气情况下旋转流动主要表现为内筒壁面附近的边界层流动, 基于这一事实得到了周向速度分布的解析表达式. 其次, 通过引入新参数扩展Cebeci-Smith代数湍流模型, 使其能考虑流线曲率、壁面吸气、低Reynolds数效应等因素. 针对这些因素的综合影响, 采用解析修正和经验参数对模型进行调整. 同时, 基于Reynolds应力湍流模型的仿真结果, 校准代数湍流模型中的经验参数. 最后, 给出基于广义Cebeci-Smith湍流模型的旋转壁面边界层流动的迭代算法, 该算法适用于需要特殊迭代过程的轴向及周向流动均匀情况. 计算了不同旋转速度和吸气强度组合工况下的边界层流动, 其周向速度和湍流强度分布与基于Reynolds应力湍流模型的计算结果非常接近. 并且表明, 当Reynolds应力湍流模型数值模拟预测内筒边界层为稳定层流时, 该方法也再现了相同初始条件下的层流边界层.   相似文献   

15.
This paper presents the calculated results for three classes of typical modern ships in modelling of ship‐generated waves. Simulations of turbulent free‐surface flows around ships are performed in a numerical water tank, based on the FINFLO‐RANS SHIP solver developed at Helsinki University of Technology. The Reynolds‐averaged Navier–Stokes (RANS) equations with the artificial compressibility and the non‐linear free‐surface boundary conditions are discretized by means of a cell‐centred finite‐volume scheme. The convergence performance is improved with the multigrid method. A free surface is tracked using a moving mesh technology, in which the non‐linear free‐surface boundary conditions are given on the actual location of the free surface. Test cases recommended are a container ship, a US Navy combatant and a tanker. The calculated results are compared with the experimental data available in the literature in terms of the wave profiles, wave pattern, and turbulent flow fields for two turbulence models, Chien's low Reynolds number k–εmodel and Baldwin–Lomax's model. Furthermore, the convergence performance, the grid refinement study and the effect of turbulence models on the waves have been investigated. Additionally, comparison of two types of the dynamic free‐surface boundary conditions is made. Copyright © 2003 John Wiley& Sons, Ltd.  相似文献   

16.
The present work is concerned with the numerical calculation of the turbulent flow field around the stern of ship models. The finite volume approximation is employed to solve the Reynolds equations in the physical domain using a body-fitted, locally orthogonal curvilinear co-ordinate system. The Reynolds stresses are modelled according to the standard k-ε turbulence model. Various numerical schemes (i.e. hybrid, skew upwind and central differencing) are examined and grid dependence tests have been performed to compare calculated with experimental results. Moreover, a direct solution of the momentum equations within the near-wall region is tried to avoid the disadvantages of the wall function approach. Comparisons between calculations and measurements are made for two ship models, i.e. the SSPA and HSVA model.  相似文献   

17.
提出了湍流边界层的一种简单、快速计算方法, 用以求解强吸气作用下旋转圆筒表面边界层流动. 首先, 理论分析了同心圆筒间的旋转流体运动, 外筒静止、内筒旋转且为多孔吸气条件. 强吸气情况下旋转流动主要表现为内筒壁面附近的边界层流动, 基于这一事实得到了周向速度分布的解析表达式. 其次, 通过引入新参数扩展Cebeci-Smith代数湍流模型, 使其能考虑流线曲率、壁面吸气、低Reynolds数效应等因素. 针对这些因素的综合影响, 采用解析修正和经验参数对模型进行调整. 同时, 基于Reynolds应力湍流模型的仿真结果, 校准代数湍流模型中的经验参数. 最后, 给出基于广义Cebeci-Smith湍流模型的旋转壁面边界层流动的迭代算法, 该算法适用于需要特殊迭代过程的轴向及周向流动均匀情况. 计算了不同旋转速度和吸气强度组合工况下的边界层流动, 其周向速度和湍流强度分布与基于Reynolds应力湍流模型的计算结果非常接近. 并且表明, 当Reynolds应力湍流模型数值模拟预测内筒边界层为稳定层流时, 该方法也再现了相同初始条件下的层流边界层.  相似文献   

18.
In the current study, numerical investigation of incompressible turbulent flow is presented. By the artificial compressibility method, momentum and continuity equations are coupled. Considering Reynolds averaged Navier–Stokes equations, the Spalart–Allmaras turbulence model, which has accurate results in two‐dimensional problems, is used to calculate Reynolds stresses. For convective fluxes a Roe‐like scheme is proposed for the steady Reynolds averaged Navier–Stokes equations. Also, Jameson averaging method was implemented. In comparison, the proposed characteristics‐based upwind incompressible turbulent Roe‐like scheme, demonstrated very accurate results, high stability, and fast convergence. The fifth‐order Runge–Kutta scheme is used for time discretization. The local time stepping and implicit residual smoothing were applied as the convergence acceleration techniques. Suitable boundary conditions have been implemented considering flow behavior. The problem has been studied at high Reynolds numbers for cross flow around the horizontal circular cylinder and NACA0012 hydrofoil. Results were compared with those of others and a good agreement has been observed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Interest in the use of supercomputers for the direct numerical calculation of turbulence prompts the development of efficient numerical techniques so that calculation at higher Reynolds numbers might be made. This paper presents an efficient pseudo-spectral technique, similar to but different from others that have recently appeared, for the calculation of momentum and heat transfer to a constant-property, turbulent fluid in a two-dimensional channel with walls at different, uniform temperature. The code uses no empiricism, although periodic boundary conditions are used for fluctuating quantities in the streamwise and spanwise directions. Calculations were made for a Prandtl number of 0·72 and Reynolds number based on friction velocity and channel half-height of 180 or 2800 based on channel half-height and average velocity. Calculations of mean velocity profile, turbulence intensities, skewness, flatness, Reynolds stress and eddy diffusivity of heat near a wall compare favourably with experimental results. Representative contour plots of the temperature field near the wall and of the spanwise and streamwise two-point velocity correlations are given. Deficiencies are that the calculation requires many hours on a fast computer with a large high-speed memory and that the grid size in each direction for appropriate resolution is approximately proportional to the square of the Reynolds number and to the Prandtl number raised to some power greater than one.  相似文献   

20.
Incompressible high-Reynolds-number flows around a circular cylinder are analyzed by direct integration of the Navier-Stokes equations using finite-difference method. A generalized coordinate system is used so that a sufficient number of grid points are distributed in the boundary layer and the wake. A numerical scheme which suppresses non-linear instability for calculations of high-Reynolds-number flows is developed. The computation of an impulsively started flow at Re = 1200 is compared with corresponding experimental observations, and excellent agreements are obtained.A series of computations are carried out on the flow around a circular cylinder with surface roughness. The height of the roughness in these computations is 0.5% of the diameter. The range of Reynolds numbers is from 103 to 105; no turbulence model is employed. Sharp reduction of drag coefficient is observed near Re = 2 × 104, which indicates that the critical Reynolds number is captured in the present computation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号