首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The vibration of elastic thin nanoplates traversed by a moving nanoparticle involving Coulomb friction is investigated using the nonlocal continuum theory of Eringen. The eigen function technique and the Laplace transform method are employed to solve the governing equations of the nanoplate. The explicit expressions of the in-plane and transverse displacements are obtained when the moving nanoparticle traverses the nanoplate on an arbitrary straight line. In a special case, the obtained results are also compared with those of other researchers and a reasonably good agreement is achieved. The effects of small-scale parameters and velocity of the moving nanoparticle on the dynamic response as well as the dynamic amplitude factors (DAFs) of the in-plane and transverse displacements are then explored in some detail. The results indicate that the magnitude of DAF of the transverse displacement of the nanoplate (i.e., DAFw) increases with the first small-scale effect parameter, irrespective of the values of the second small-scale effect parameter and the velocity of the moving nanoparticle. As the first small-scale effect parameter grows, the maximum values of DAFw as a function of the moving nanoparticle velocity increase and generally occur in the lower levels of the moving nanoparticle velocity.  相似文献   

2.
The potential applications of nanoplates in energy storage, chemical and biological sensors, solar cells, field emission, and transporting of nanocars have been attracted the attentions of the nanotechnology community to them during recent years. Herein, the later application of nanoplates from nonlocal elastodynamic point of view is of interest. To this end, dynamic response of a nanoplate subjected to a moving nanoparticle is examined within the context of nonlocal continuum theory of Eringen. The fully simply supported nanoplate is modeled based on the nonlocal Kirchhoff, Mindlin, and higher-order plate theories. The non-dimensional equations of motion of the nonlocal plate models are established. The effects of moving nanoparticle's weight and existing friction between the surfaces of the moving nanoparticle and nanoplate on the in-plane and out-of-plane vibrations of the nanoplate are incorporated into the formulations of the proposed models. The eigen function expansion and the Laplace transform methods are employed for discretization of the governing equations in the spatial and the time domains, respectively. The analytical expressions of the dynamic deformation field associated with each nonlocal plate theory are obtained when the moving nanoparticle traverses the nanoplate on an arbitrary straight path (an opened path) as well as an ellipse path (a closed path). The dynamic in-plane forces and moments of each nonlocal plate model are also derived. Furthermore, the critical velocity and the critical angular velocity of the moving nanoparticle for the proposed models are expressed analytically for the aforementioned paths. Part II of this work consists in a comprehensive parametric study where the effects of influential parameters on dynamic response of the proposed nonlocal plate models are scrutinized in some detail.  相似文献   

3.
Dynamic analysis of nanotube structures under excitation of a moving nanoparticle is carried out using nonlocal continuum theory of Eringen. To this end, the nanotube structure is modeled by an equivalent continuum structure (ECS) according to the nonlocal Euler-Bernoulli, Timoshenko and higher order beam theories. The nondimensional equations of motion of the nonlocal beams acted upon by a moving nanoparticle are then established. Analytical solutions of the problem are presented for simply supported boundary conditions. The explicit expressions of the critical velocities of the nonlocal beams are derived. Furthermore, the capabilities of various nonlocal beam models in predicting the dynamic deflection of the ECS are examined through various numerical simulations. The role of the scale effect parameter, the slenderness ratio of the ECS and velocity of the moving nanoparticle on the time history of deflection as well as the dynamic amplitude factor of the nonlocal beams are scrutinized in some detail. The results show the importance of using nonlocal shear deformable beam theories, particularly for very stocky nanotube structures acted upon by a moving nanoparticle with low velocity.  相似文献   

4.
L.L. Zhang  X.Q. Fang  G.Q. Nie 《哲学杂志》2013,93(18):2009-2020
Within the framework of nonlocal elasticity, the surface layer model is proposed to investigate the wave propagation characteristics in a single-layered nanoplate. The general solutions of nonlocal governing equations are expressed using partial wave technique and the nonclassical boundary conditions are derived. The dispersion relation with the effects of surface and nonlocal small-scale is obtained, and the size-dependent dispersion behaviour is demonstrated. The impacts of surface elasticity, residual surface stress and nonlocal parameter on the dispersion curves of the lowest-order two modes are illustrated. Numerical examples reveal that both the surface effect and nonlocal small-scale effect can obviously decrease the magnitude of phase velocity, and the thinner nanoplate corresponds to the smaller wave velocity and the narrower frequency bandwidth.  相似文献   

5.
In this article, an analytical approach is developed to study the effects of thermal loading on the wave propagation characteristics of an embedded functionally graded (FG) nanoplate based on refined four-variable plate theory. The heat conduction equation is solved to derive the nonlinear temperature distribution across the thickness. Temperature-dependent material properties of nanoplate are graded using Mori–Tanaka model. The nonlocal elasticity theory of Eringen is introduced to consider small-scale effects. The governing equations are derived by the means of Hamilton’s principle. Obtained frequencies are validated with those of previously published works. Effects of different parameters such as temperature distribution, foundation parameters, nonlocal parameter, and gradient index on the wave propagation response of size-dependent FG nanoplates have been investigated.  相似文献   

6.
This paper investigates active vibration suppression of a single-walled carbon nanotube (SWCNT) under the action of a moving harmonic load using Eringen’s nonlocal elasticity theory. The SWCNT is modeled according to the nonlocal Euler–Bernoulli beam theory. A Dirac-delta function is used to describe the position of the moving load along the SWCNT. Next, a linear classical optimal control algorithm with displacement-velocity feedback is used to suppress vibration in the SWCNT with control forces acting as actuators. The effects of a small-scale parameter, slenderness ratio, moving load velocity, and the excitation frequency of a moving load on the dynamic deflection of the SWCNT are examined. Finally, the ability of the control algorithm to suppress the response of the SWCNT under the effects of a moving load with a number of controlled modes and control forces is surveyed.  相似文献   

7.
This paper investigates the thermo-electro-mechanical vibration of the rectangular piezoelectric nanoplate under various boundary conditions based on the nonlocal theory and the Mindlin plate theory. It is assumed that the piezoelectric nanoplate is subjected to a biaxial force, an external electric voltage and a uniform temperature rise. The Hamilton's principle is employed to derive the governing equations and boundary conditions, which are then discretized by using the differential quadrature (DQ) method to determine the natural frequencies and mode shapes. The detailed parametric study is conducted to examine the effect of the nonlocal parameter, thermo-electro-mechanical loadings, boundary conditions, aspect ratio and side-to-thickness ratio on the vibration behaviors.  相似文献   

8.
Using three-dimensional (3-D) nonlocal elasticity theory of Eringen, this paper presents closed-form solutions for in-plane and out-of-plane free vibration of simply supported functionally graded (FG) rectangular micro/nanoplates. Elasticity modulus and mass density of FG material are assumed to vary exponentially through the thickness of micro/nanoplate, whereas Poisson's ratio is considered to be constant. By employing appropriate displacement fields for the in-plane and out-of-plane modes that satisfy boundary conditions of the plate, ordinary differential equations of free vibration are obtained. Boundary conditions on the lateral surfaces are imposed on the analytical solutions of the equations to yield the natural frequencies of FG micro/nanoplate. The natural frequencies of FG micro/nanoplate are obtained for different values of nonlocal parameter and gradient index of material properties. The results of this investigation can be used as a benchmark for the future numerical, semi-analytical and analytical studies on the free vibration of FG micro/nanoplates.  相似文献   

9.
In this study, an analytical method of the small scale parameter on the vibration of single-walled Boron Nitride nanotube (SWBNNT) under a moving nanoparticle is presented. SWBNNT is embedded in bundle of carbon nanotubes (CNTs) which is simulated as Pasternak foundation. Using Euler–Bernoulli beam (EBB) model, Hamilton's principle and nonlocal piezoelasticity theory, the higher order governing equation is derived. The effects of electric field, elastic medium, slenderness ratio and small scale parameter are investigated on the vibration behavior of SWBNNT under a moving nanoparticle. Results indicate the importance of using surrounding elastic medium in decrease of normalized dynamic deflection. Indeed, the normalized dynamic deflection decreases with the increase of the elastic medium stiffness values. The electric field has significant role on the nondimensional fundamental frequencies, as a smart controller. The results of this work is hoped to be of use in design and manufacturing of smart nano-electro-mechanical devices in advanced medical applications such as drug delivery systems with great applications in biomechanics.  相似文献   

10.
In this paper, the small-scale effects on the flexural wave in the nanoplate are studied. Based on the nonlocal continuum theory, the equation of wave motion is derived and the dispersion relation is presented. Numerical simulations are performed to investigate the influences of the scale coefficient, the surrounding elastic matrix and the initial stress on the wave propagation properties. The results show that the nonlocal model provides an appropriate method to investigate the characteristics of the flexural wave in the nanoplate. Furthermore, the direction and amplitude of the biaxial load, the stiffness of the shearing layer and the Winkler foundation can change the wave properties, significantly.  相似文献   

11.
Thanks to the brilliant mechanical properties of single-walled carbon nanotubes (SWCNTs), they are suggested as high speed nanoscale vehicles. To date, various aspects of vibrations of SWCNTs have been addressed; however, vibrations and instabilities of moving SWCNTs have not been thoroughly assessed. Herein, vibrational properties of an axially moving SWCNT with simply supported ends are studied using nonlocal Rayleigh beam theory. Employing assumed mode and Galerkin methods, the discrete governing equations pertinent to longitudinal, transverse, and torsional motions of the moving SWCNT are obtained. The resulting eigenvalue equations are then numerically solved. The speeds corresponding to the initiation of the instability within the moving nanostructure are calculated. The roles of the speed of the moving SWCNT, small-scale parameter, and aspect ratio on the characteristics of longitudinal, transverse, and torsional vibrations of axially moving SWCNTs are scrutinized. The obtained results show that the appearance of the small-scale parameter would result in the occurrence of both divergence and flutter instabilities at lower levels of the speed.  相似文献   

12.
《Current Applied Physics》2014,14(8):1116-1139
Free dynamic analysis of transverse motion of vertically aligned stocky ensembles of single-walled carbon nanotubes is of particular interest. A linear model is developed to take into account the van der Waals forces between adjacent SWCNTs because of their bidirectional transverse displacements. Using Hamilton's principle, the discrete equations of motion of free vibration of the nanostructure are obtained based on the nonlocal Rayleigh, Timoshenko, and higher-order beam theories. The application of such discrete models for frequency analysis of highly populated ensembles would be associated with so much computational effort. To overcome such a problem, some useful nonlocal continuous models are established. The obtained results reveal that the newly developed models can successfully capture the predicted fundamental frequencies of the discrete models. Through various numerical studies, the roles of slenderness ratio, radius of the SWCNT, small-scale parameter, population of the ensemble, and intertube distance on the fundamental flexural frequency of the nanostructure are examined and discussed. The capabilities of the proposed nonlocal continuous models in predicting flexural frequencies of the nanostructure are also addressed.  相似文献   

13.
This study presents an analytical approach for buckling analysis and smart control of a single layer graphene sheet (SLGS) using a coupled polyvinylidene fluoride (PVDF) nanoplate. The SLGS and PVDF nanoplate are considered to be coupled by an enclosing elastic medium which is simulated by the Pasternak foundation. The PVDF nanoplate is subjected to an applied voltage in the thickness direction which operates in control of critical load of the SLGS. In order to satisfy the Maxwell equation, electric potential distribution is assumed as a combination of a half-cosine and linear variation. The exact analysis is performed for the case when all four ends are simply supported and free electrical boundary condition. Adopting the nonlocal Mindlin plate theory, the governing equations are derived based on the energy method and Hamilton's principle. A detailed parametric study is conducted to elucidate the influences of the small scale coefficient, stiffness of the internal elastic medium, graphene length, mode number and external electric voltage on the buckling smart control of the SLGS. The results depict that the imposed external voltage is an effective controlling parameter for buckling of the SLGS. This study might be useful for the design and smart control of nano-devices.  相似文献   

14.
In this paper, a comprehensive assessment of design parameters for various beam theories subjected to a moving mass is investigated under different boundary conditions. The design parameters are adopted as the maximum dynamic deflection and bending moment of the beam. To this end, discrete equations of motion for classical Euler-Bernoulli, Timoshenko and higher-order beams under a moving mass are derived based on Hamilton's principle. The reproducing kernel particle method (RKPM) and extended Newmark-β method are utilized for spatial and time discretization of the problem, correspondingly. The design parameter spectra in terms of the beam slenderness, mass weight and velocity of the moving mass are introduced for the mentioned beam theories as well as various boundary conditions. The results indicate the existence of a critical beam slenderness mostly as a function of beam boundary condition, in which, for slenderness lower than this so-called critical one, the application of Euler-Bernoulli or even Timoshenko beam theories would underestimate the real dynamic response of the system. Moreover, there would be a roughly linear relation between the weight of the moving mass and the design parameters for a certain value of the moving mass velocity in most cases of boundary conditions.  相似文献   

15.
An analysis is performed to study the free convective flow over a moving vertical porous plate with variable temperature under the influence of magnetic field and thermal radiation. The fluid considered here is a gray, absorbing-emitting radiation, but a nonscattering medium. The dimensionless governing equations are solved using the Laplace transform technique. The velocity, temperature, skin friction and Nusselt number are studied for different parameters like the radiation parameter, Grashof number, Prandtl number, magnetic field parameter, permeability parameter, and time. It is observed that the velocity decreases with increasing radiation parameter.  相似文献   

16.
The analysis of flow past a continuously moving semi-infinite flat plate in the presence of transverse magnetic field has been presented. Model solutions have been derived and the resulting equations are integrated numerically. Velocity profiles are displayed graphically and the numerical values of the transverse velocity skin friction are given in the form of tables. It has been observed that an increase inM (magnetic field parameter) leads to a decrease in velocity.The author wishes to express his thanks to Dr. H. N. Siddiquie, Director, and Dr. J. S. Sastry, Head, Physical Oceanography Division, for their keen interest and encouragement throughout this work.  相似文献   

17.
In this study, the effects of small-scale of the both nanoflow and nanostructure on the vibrational response of fluid flowing single-walled carbon nanotubes are investigated. To this purpose, two various flowing fluids, the air-nano-flow and the water nano-flow using Knudsen number, and two different continuum theories, the nonlocal theory and the strain-inertia gradient theory are studied. Nano-rod model is used to model the fluid-structure interaction, and Galerkin method of weighted residual is utilizing to solve and discretize the governing obtained equations. It is found that the critical flow velocity decreases as the wave number increases, excluding the first mode divergence that it has the least value among of the other instabilities if the strain-inertia gradient theory is employed. Moreover, it is observed that Kn effect has considerable impact on the reduction of critical velocities especially for the air-flow flowing through the CNT. In addition, by increasing a nonlocal parameter and Knudsen number the critical flow velocity decreases but it increases as the characteristic length related to the strain-inertia gradient theory increases.  相似文献   

18.
The propagation characteristics of the longitudinal wave in a piezoelectric nanoplate were investigated in this study. The nonlocal elasticity theory was used and the surface effects were taken into account. In addition, the group velocity and phase velocity were derived and investigated, respectively. The dispersion relation was analyzed with different scale coefficients, wavenumbers, and voltages. The results showed that the dispersion degree can be strengthened by increasing the wavenumber and scale coefficient.  相似文献   

19.
This Letter considers the axial instability of double-nanobeam-systems. Eringen's nonlocal elasticity is utilized for modelling the double-nanobeam-systems. The nonlocal theory accounts for the small-scale effects arising at the nanoscale. The small-scale effects substantially influence the instability (or buckling) of double-nanobeam-systems. Results reveal that the small-scale effects are higher with increasing values of nonlocal parameter for the case of in-phase (synchronous) buckling modes than the out-of-phase (asynchronous) buckling modes. The increase of the stiffness of the coupling elastic medium in double-nanobeam-system reduces the small-scale effects during the out-of-phase (asynchronous) buckling modes. Analysis of the scale effects in higher buckling loads of double-nanobeam-system with synchronous and asynchronous modes is also discussed in this Letter. The theoretical development presented herein may serve as a reference for nonlocal theories as applied to the instability analysis of complex-nanobeam-system such as complex carbon nanotube system.  相似文献   

20.
《Current Applied Physics》2015,15(9):1062-1069
This article presents analytical explicit frequency expressions for investigating the vibrations of single-layer graphene sheets (SLGSs). The interatomic potential is incorporated into a nonlocal continuum plate model through establishing a linkage between the strain energy density induced in the continuum and nonlocal plate constitutive relations. The model which is independent of scattered value of Young's modulus is then applied and explicit frequency formulas for the SLGSs with different edge conditions are derived using static deflection function of the nanoplate under uniformly distributed load. The reliability of the present formulation is verified by the results obtained by the molecular dynamics (MD) simulations and other research workers. The formulas are of a simple short form enabling quick and accurate evaluation of the frequency of the SLGSs and also simple calibration of scale coefficient by the use of MD simulations results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号