首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 782 毫秒
1.
By the first-principles calculations, we studied the structure, electronic and magnetic properties of LaOMnSe. The band structure and Fermi surface of LaOMnSe are very similar to those of LaOFeAs, where there are three hole-like Fermi surfaces around Γ-point and two electron-like Fermi surfaces around M-point. The hole-like Fermi surfaces will strongly overlap with electron-like Fermi surfaces if they are shifted by the q vector (π,π,0). Such Fermi surfaces nesting will induce magnetic instability and spin density wave (SDW), which is similar to LaOFeAs. Because of so much similarity to LaOFeAs, LaOMnSe is expected to become superconductor with electron or hole doping.  相似文献   

2.
We report an angle-resolved photoemission spectroscopy study of electronic structures of Eu1−xLaxFe2As2 single crystals, in which the spin density wave transition is suppressed with La doping. In the paramagnetic state, the Fermi surface maps are similar for all dopings, with chemical potential shifts corresponding to the extra electrons introduced by the La doping. In the spin density wave state, we identify electronic structure signatures that relate to the spin density wave transition. Bands around M show that the energy of the system is saved by the band shifts towards high energies, and the shifts decrease with increasing doping, in agreement with the weakened magnetic order.  相似文献   

3.
通过第一性原理计算,我们研究了LaOMnSe的结构、电子性质和磁性质.我们发现LaOMnSe在11点附近存在三个类空穴费米面,在M点附近有两个类电子费米面.如果将类空穴费米面平移(π,π,O),则类空穴费米面就会和类电子费米面在很大程度上重叠,这种费米面嵌套将会导致磁不稳定性和自旋密度波(SI)、V),和LaOFeAs...  相似文献   

4.
The crystal structure, magnetism properties, and density of states for FeAs layered compound SrFe2As2 have been investigated by using the density functional theory (DFT) method. The magnetism under a checkerboard nearest neighbor anti-ferromagnetic (NN AFM) and ferromagnetic (FM) order ground-state have been analyzed with substitution for Sr with K ion in Sr1−xKxFe2As2. The results indicate that the distortion of FeAs tetrahedrons is sensitive to the electron doping concentration. The system magnetism was suppressed by K doping in NN-AFM ground state instead of FM. The density of states at Fermi level N(EF) under NN AFM ground state would be regarded as a driving force for the increased Tc of Sr1−xKxFe2As2 system as observed experimentally. Our calculation reflects that NN AFM type spin fluctuation may still exist in the Sr1−xKxFe2As2 system and it may be an origin of strong spin fluctuation in this system besides the spin density wave (SDW) states.  相似文献   

5.
We have studied the electronic structures of URu2Si2 employing ultrahigh-resolution laser angle-resolved photoemission spectroscopy. The change of photoemission spectra is investigated across the hidden-order transition, and the emergence of a narrow band is clearly observed near the Fermi level for both (π,0) and (π,π) directions. In addition, it is shown that tuning of light's polarization allows the signal of a hole-like dispersive feature to enhance. These observations prove that laser angle-resolved photoemission spectroscopy is an effective tool for studying the evolution of electronic structures across the hidden-order transition in URu2Si2.  相似文献   

6.
Here we apply high resolution angle-resolved photoemission spectroscopy (ARPES) using a wide excitation energy range to probe the electronic structure and the Fermi surface topology of the Ba1?xKxFe2As2 (Tc = 32 K) superconductor. We find significant deviations in the low energy band structure from that predicted in calculations. A set of Fermi surface sheets with unexpected topology is detected at the Brillouin zone boundary. At the X-symmetry point the Fermi surface is formed by a shallow electron-like pocket surrounded by four hole-like pockets elongated in Γ?X and Γ?Y directions.  相似文献   

7.
We have investigated three-dimensional electronic structure for NaxCoO2 (x=0.77 and 0.65) by high-resolution angle-resolved photoemission spectroscopy to study the origin of antiferromagnetic (AF) transition of highly doped NaxCoO2(x>0.75). The a1g large hole-like Fermi surface (FS) in x=0.77 shows distinct three-dimensionality along the kz direction, and a three-dimensional small electron pocket appears around Γ point, indicating strong inter-layer electronic correlation. On the other hand, x=0.65 sample does not show three-dimensional behavior. This result indicates that transition of FS as a function of band filling is closely related to the occurrence of the magnetic transition in highly doped NaxCoO2.  相似文献   

8.
The electronic structure and magnetic properties of the Ti2CoB Heusler compound with a high-ordered CuHg2Ti structure were investigated using the self-consistent full potential linearized augmented plane wave (FPLAPW) method within the density functional theory (DFT). Spin-polarized calculations show that the Ti2CoB compound is half-metallic ferromagnetic with a magnetic moment of 2 μB at the equilibrium lattice constant, a=5.74 Å. The Ti2CoB Heusler compound is ferromagnetic below the equilibrium lattice constant and ferrimagnetic above the equilibrium lattice constant. A large peak in majority-spin DOS and an energy gap in minority-spin DOS are observed at the Fermi level, yielding a spin polarization of 100%. A spin polarization higher than 90% is achieved for a wide range of lattice constants between 5.6 and 6.0 Å.  相似文献   

9.
The effects of spin structures on the Fermi surface topologies of BaFe2As2 were calculated using the first-principles approach. Here, we considered the nonmagnetic, Checkerboard, Stripe, and SDW (spin-density-wave) structures as well as a tetragonal structure labeled as STR17. By comparing the calculated results with the published angle-resolved photoemission spectroscopy from the literature, we propose that most of the experimentally observed Fermi surfaces of BaFe2As2 are the thermal mixture of those of the SDW, STR17, and Stripe structures.  相似文献   

10.
75As-zero-field nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements are performed on CaFe2As2 under pressure. At P=4.7 and 10.8 kbar, the temperature dependence of nuclear-spin-lattice relaxation rate (1/T1) measured at tetragonal phase show no coherence peak just below Tc and decrease with decreasing temperature. The superconductivity is of gapless at P=4.7 kbar but evolves to multiple gaps at P=10.8 kbar. We find that the superconductivity appears near a quantum critical point. Both electron correlation and superconductivity disappear in the collapsed tetragonal phase. A systematic study under pressure indicates that electron correlations play a vital role in forming Cooper pairs in this compound.  相似文献   

11.
The electronic structure of the organic conductors (TMTSF)2X has been explored in terms of the tight binding band structures calculated for a sheet of TSF molecules. The Se 4d-orbitals appear to be critical in enhancing the interstack Se…Se interaction to the point that (TMTSF)2X becomes pseudo two-dimensional. Based upon the present band structure study, it is discussed whether a normal metallic state or a spin density wave state provides the closed Fermi surface responsible for the Shubnikov-de Haas oscillations observed in (TMTSF)2PF6.  相似文献   

12.
Yanli Wang  Yi Ding  Jun Ni   《Solid State Communications》2009,149(47-48):2125-2129
We have performed first-principles calculations to investigate the pressure effects on CaFe2As2 and BaFe2As2. Our calculations show that in CaFe2As2, the orthorhombic structure transforms to a collapsed tetragonal structure at 0.4 GPa with a volume collapse of 9.5%, which is in agreement with experiments. Together with the structural phase transition, CaFe2As2 undergoes a magnetic transition from the stripe antiferromagnetic ordering to the nonmagnetic state. For BaFe2As2, we predict that the orthorhombic structure transforms to the tetragonal structure at 9.4 GPa. Unlike CaFe2As2, the magnetic moments of Fe ions in BaFe2As2 are not zero and the stripe antiferromagnetic ordering transforms to the checkerboard antiferromagnetic ordering together with the structural phase transition. The stability of the orthorhombic structure up to 9.4 GPa suggests that superconductivity and magnetism coexist in BaFe2As2.  相似文献   

13.
Ab‐initio calculations within density functional theory are performed to obtain a more systematic understanding of the electronic structure of iron pnictides. As a prototypical compound we study Ba0.5K0.5Fe2As2 and analyze the changes of its electronic structure when the interaction between the Fe2As2 layers and their surrounding is modified. We find strong effects on the density of states near the Fermi energy as well as the Fermi surface. The role of the electron donor atoms in iron pnictides thus cannot be understood in a rigid band picture. Instead, the bonding within the Fe2As2 layers reacts to a modified charge transfer from the donor atoms by adapting the intra‐layer Fe‐As hybridization and charge transfer in order to maintain an As3‐ valence state.  相似文献   

14.
The electronic structure, the metallic and magnetic properties of metal phosphonate Co[(CH3PO3)(H2O)] have been studied by first-principles calculations, which were based on the density-functional theory (DFT) and the full potential linearized augmented plane wave (FPLAPW) method. The total energy, the spin magnetic moments and the density of the states (DOS) were all calculated. The calculations reveal that the compound Co[(CH3PO3)(H2O)] has a stable metallic antiferromagnetic (AFM) ground state and a half-metallic ferromagnetic (FM) metastable state. Based on the spin distribution obtained from calculations, it is found that the spin magnetic moment of the compound is mainly from the Co2+, with some small contributions from the oxygen, carbon and phosphorus atoms, and the spin magnetic moment per molecule is 5.000μB, which is in good agreement with the experimental results.  相似文献   

15.
In angle-resolved photoemission spectroscopy pseudogap phenomenon in high-temperature superconductors is observed as Fermi arcs, or truncated Fermi surface. Here I argue that the hole induced chiral spin texture scenario naturally leads to Fermi arcs by including hole hopping processes. Disappearance of part of the Fermi surface is associated with the effect of the coherence factor. Suppressed spectral weight of the holes turns out to be an electron-like component which has weight near (π,0) only and has some charge instability.  相似文献   

16.
We have performed an angle-resolved photoemission study of the iron pnictide superconductor KFe2As2 with . Most of the observed Fermi surfaces show almost two-dimensional shapes, while one of the quasi-particle bands near the Fermi level has a strong dispersion along the kz direction, consistent with the result of a band-structure calculation. However, hole Fermi surfaces α and ζ are smaller than those predicted by the calculation while other Fermi surfaces are larger. These observations are consistent with the result of a de Haas-van Alphen study and a theoretical prediction on inter-band scattering, possibly indicating many body effects on the electronic structure.  相似文献   

17.
We investigate the electronic structures and magnetic properties of Mn2ZnMg compound with Hg2CuTi-type structure using first-principles full-potential local orbital minimum basis calculations. Based on the analysis on the electronic structures, it is demonstrated that the compound is half-metallic antiferromagnet and the compound is favorable to form Hg2CuTi-type structure instead of the conventional L21 one. The complicated hybridization among the p and d states dominates mainly the origin of the gap. The Fermi level (EF) shifts slightly with the lattice parameter changed. Spin-orbit coupling hardly reduces the degree of spin polarization of the density of states at the Fermi level.  相似文献   

18.
Polycrystalline and single crystalline samples of CaFe2As2 were prepared by using different fabrication routes. These samples show evident differences in both phase transition temperatures and transport properties depending on fabrication conditions. TEM observations reveal a rich variety of structural phenomena in these materials, such as a tweed-like pattern in self-flux samples, a structural modulation along the 〈1 1 0〉tetra direction in the polycrystalline sample, and complex dislocation networks in the Sn-flux samples. Careful analysis shows that the twinning domains arising from the tetragonal-to-orthorhombic phase transition belong to the δ-type.  相似文献   

19.
钱玉敏  徐刚 《物理学报》2011,60(6):67101-067101
基于密度泛函理论(DFT)在广义梯度(GGA)下计算了钴磷族化合物BaT2P2和BaT2As2(T=Co, Rh, Ir)的电子结构.研究发现在BaCo2P2和BaCo2As2中,由于范霍夫畸点位于费米面附近使得费米能级处的态密度非常高,从而导致由斯通纳机理引起的巡游铁磁不稳定性.在从Co到 关键词: 电子结构 范霍夫畸点 斯通纳不稳定性  相似文献   

20.
We investigate the electronic structure of EuPtSi3 using full potential linearized augmented plane wave method within the generalized gradient approximation. We reproduce the observed easy axis of magnetization as well as magnetic moment and propose that the magnetic configuration for this compound is incommensurate or noncollinear. We find that the spin configuration has only negligible effect on the band around Fermi energy. EuPtSi3 and its isostructural superconductor BaPtSi3 have similar band structures. Despite the shorter Pt-Si bond, EuPtSi3 possesses larger density of state near the Fermi energy compared with BaPtSi3, thus the structural difference and the associated difference in band structure cannot explain the non-superconductivity of EuPtSi3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号