首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 432 毫秒
1.
Uranium(VI) was removed from aqueous solutions using carbon coated Fe3O4 nanoparticles (Fe3O4@C). Batch experiments were conducted to study the effects of initial pH, shaking time and temperature on uranium sorption efficiency. It was found that the maximum adsorption capacity of the Fe3O4@C toward uranium(VI) was ∼120.20 mg g−1 when the initial uranium(VI) concentration was 100 mg L−1, displaying a high efficiency for the removal of uranium(VI) ions. Kinetics of the uranium(VI) removal is found to follow pseudo-second-order rate equation. In addition, the uranium(VI)-loaded Fe3O4@C nanoparticles can be recovered easily from aqueous solution by magnetic separation and regenerated by acid treatment. Present study suggested that magnetic Fe3O4@C composite particles can be used as an effective and recyclable adsorbent for the removal of uranium(VI) from aqueous solutions.  相似文献   

2.
In this work, we report the development of novel amino-functionalized Fe3O4 hybrid microspheres adsorbent from a facial and one-step solvothermal route by using FeCl3·6H2O as a single iron source and 3-aminophenoxy-phthalonitrile as ource of amino groups. During solvothermal process, the nitrile groups of 3-aminophenoxy-phthalonitrile would bond with the Fe3O4 through the phthalocyanine cyclization reaction to form the amino-functionalized Fe3O4 magnetic nano-material, which was confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermo-gravimetric analyzer (TGA). From the scanning electron microscope (SEM) and transmission electron microscopy (TEM) observation, the resulting monodispersed amino-functionalized Fe3O4 hybrid microspheres with the diameters of 180–200 nm were synthesized via the self-assembly process. More importantly, as-prepared Fe3O4 nano-materials with abundant amino groups exhibited high separation efficiency when they were used to remove the Cu(II) from aqueous solutions. Furthermore, the adsorption isotherms of Fe3O4 nano-material for Cu(II) removal fitted the Langmuir isotherm model, in which the calculated maximum adsorption capacity could increase from 5.51 to 16.25 mg g–1 at room temperature. This work demonstrated that the amino-functionalized Fe3O4 magnetic nano-materials were promising as efficient adsorbents for the removal of heavy metal ions from wastewater in low concentration.  相似文献   

3.
Amino‐functionalized Fe3O4@carbon microspheres (NH2?Fe3O4@C) were prepared and the electrochemical sensor was constructed using NH2?Fe3O4@C modified glassy carbon electrodes (GCE) to determine toxic heavy metals in aqueous solution. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the structure and phase of NH2?Fe3O4@C. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) results indicate that NH2?Fe3O4@C modified GCE possesses large active area and excellent electron transfer. Under optimized electrochemical condition, Cd(II), Pb(II) and Cu(II) were determined using NH2?Fe3O4@C modified GCE. The electrode through amino functionalization exhibits higher sensitivity and lower detection limit toward Cd(II) and Cu(II) due to the acid‐base pairing interaction between the electron‐rich ?NH2 ligand and the electron‐deficient heavy metal ions. Compared with other similar results reported in the literature, the NH2?Fe3O4@C modified electrode exhibits wider linear response range while with comparable lower detection limit. It also exhibits excellent stability, reproducibility and anti‐interference ability.  相似文献   

4.
Mesoporous magnetic Fe3O4@C nanoparticles have been synthesized by a one-pot approach and used as adsorbents for removal of Cr (Ⅳ) from aqueous solution. Magnetic iron oxide nanostructured materials encapsulated by carbon were characterized by scanning electron microscope (SEM), nitrogen adsorption and desorption, X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The adsorption performance of the nanomaterial adsorbents is tested with the removal of Cr (Ⅳ) from aqueous solution. The results reveal that the mesoporous magnetic Fe3O4@C nanospheres exhibit excellent adsorption efficiency and be easily isolated by an external magnetic field. In comparison with magnetic Fe3O4 nanospheres, the mesoporous magnetic Fe3O4@C exhibited 1.8 times higher removal rate of Cr Ⅵ. Themesoporous structure and an abundance of hydroxy groups on the carbon surfacemay be responsible for high absorbent capability.  相似文献   

5.
Kong  Qingming  Xu  Diansheng  Wang  Xuejun  Lou  Tao 《Cellulose (London, England)》2022,29(13):7251-7262

Biopolymer hollow spheres have shown great promise for wastewater treatment due to their unique structure and properties. However, challenging issues like low efficiency and poor recyclability still exist for most hollow spheres. In this study, the modification of chitosan/carboxymethyl cellulose (CS/CMC) with Fe3O4 nanoparticles for the formation of bifunctional CS/CMC-Fe3O4 hybrid hollow spheres were prepared using a facile two stage mixing route, which exhibited excellent adsorption and catalytic degradation of dyes. The removal ability of the synthesized hollow spheres towards acid blue-113 (AB) and reactive orange C-3R (RO) using persulfate oxidation system was greatly improved compared with single adsorption or catalysis. The removal ratio of AB and RO could reach up to 96.2 and 97.5%, respectively. The kinetic process conformed to the quasi-second-order kinetics and the adsorption process was the controlling step of dye removal. In addition, the created hollow spheres showed excellent environmental adaptability and regenerative capability. This study provides a convenient and practical method for catalyst loading on biomass hollow spheres, which has perspective applications in wastewater purification.

  相似文献   

6.
In this study, a method is developed to fabricate Fe3O4@C particles with a coaxial and penetrated hollow mesochannel based on the concept of “confined nanospace pyrolysis”. The synthesis involves the production of a polydopamine coating followed by a silica coating on a rod‐shaped β‐FeOOH nanoparticle, and subsequent treatment by using confined nanospace pyrolysis and silica removal procedures. Typical coaxial hollow Fe3O4@C possesses a rice‐grain morphology and mesoporous structure with a large specific surface area, as well as a continuous and flexible carbon shell. Electrochemical tests reveal that the hollow Fe3O4@C with an open‐ended nanostructure delivers a high specific capacity (ca. 864 mA h g?1 at 1 A g?1), excellent rate capability with a capacity of about 582 mA h g?1 at 2 A g?1, and a high Coulombic efficiency (>97 %). The excellent electrochemical performance benefits from the hollow cavity with an inner diameter of 18 nm and a flexible carbon shell that can accommodate the volume change of the Fe3O4 during the lithium insertion/extraction processes as well as the large specific surface area and open inner cavity to facilitate the rapid diffusion of lithium ions from electrolyte to active material. This fabrication strategy can be used to generate a hollow or porous metal oxide structure for high‐performance Li‐ion batteries.  相似文献   

7.

Decontamination of aqueous heavy metal is a challenging task of environmental remediation. Herein, we demonstrated an adsorptive method for efficient removal of aqueous Hg(II) using a magnetic nanocomposite Fe3O4/graphene oxide (Fe3O4/GO). Adsorption of Hg(II) onto Fe3O4/GO equilibrated in 4 min, with the adsorption percent and quantity of 91.17% and 547.01 mg g?1, respectively. Fe3O4/GO can be easily recovered from solution via magnetic separation for reuse, and retaining 73.5% of its original capacity after five consecutive cycles. The Temkin model and PSO model were most suitable for describing adsorption in equilibrium and non-equilibrium state, respectively. Both GO and Fe3O4 adsorbed Hg(II) via donating electrons in oxygen atoms toward Hg(II). Moreover, GO made a major contribution, while Fe3O4 made a minor one to adsorption. The facile preparation, high adsorption efficiency, easy recovery, and reusability may enable Fe3O4/GO to be a promising adsorbent for aqueous Hg(II).

  相似文献   

8.
采用“一锅法”制备了四氧化三铁/半胱氨酸(Fe3O4/Cys)磁性纳米微球,随后对Fe3O4/Cys进行亚氨基二乙酸(IDA)修饰得到Fe3O4/Cys/IDA磁性双功能化纳米微球。研究发现Fe3O4/Cys中的L-Cys是通过—SH基团接枝到Fe3O4表面的,随后IDA分子中的羧基与Fe3O4/Cys中的—NH2形成酰胺键,最终形成多支链多羧基的Fe3O4/Cys/IDA磁性纳米修复剂。基于修复剂表面短支链-长支链交替的多羧基结构,实现了羧基基团的高密度接枝。同时,Fe3O4/Cys/IDA磁性纳米微球对Pb2+、Cd2+、Cu2+、Co2+、Ni2+、Zn2+为专性吸附,而对Hg2+属于非专性吸附,且吸附重金属后得到的钝化产物均表现了良好的稳定性。另外,Fe3O4/Cys/IDA对重金属离子的吸附符合Langmuir模型,属于单层均相吸附,其吸附过程符合准二级动力学模型,最大吸附量为49.05 mg·g-1。  相似文献   

9.
This study presents the feasibility of using various functionalized substrates, Fe3O4 nanoparticles (NPs) and Al2O3 spheres, for the removal of Cd from aqueous solution. To improve the materials’ affinity to Cd, we explored four different surface modifications, namely (3-Aminopropyl) triethoxysilane (APTES), L-Cysteine (Cys) and 3-(triethoxysilyl) propylsuccinic anhydride (CAS). Particles were characterized by FTIR, FIB-SEM and DLS and studied for their ability to remove metal ions. Modified NPs with APTES proved to be effective for Cd removal with efficiencies of up to 94%, and retention ratios up to 0.49 mg of Cd per g of NPs. Batch adsorption experiments investigated the influence of pH, contact time, and adsorbent dose on Cd adsorption. Additionally, the recyclability of the adsorbent and its potential phytotoxicity and animal toxicity effects were explored. The Langmuir, Freundlich, pseudo-first-order and pseudo-second-order models were applied to describe the behavior of the Cd adsorption processes. The adsorption and desorption results showed that Fe3O4 NPs modified with APTES are promising low-cost platforms with low phytotoxicity for highly efficient heavy metal removal in wastewater.  相似文献   

10.
Magnetic poly(acrylic acid‐acrylamide‐butyl methacrylate) (P(AAB)) nanocomposite hydrogels were prepared and used as adsorbents for removal and separation of cationic dyes from aqueous solution. These magnetic P(AAB) nanocomposite hydrogels were characterized by scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). It was found that these magnetic P(AAB) nanocomposite hydrogels had magnetic responsive characters. The dynamic swelling, removal, and separation of cationic dye, crystal violet (CV), and basic magenta (BM) by these magnetic nanocomposite hydrogels were studied. The adsorption capacity and isotherm studies of cationic dyes onto magnetic P(AAB) nanocomposite hydrogels have been evaluated. The magnetic P(AAB) nanocomposite hydrogels containing Fe3O4 particles can be easily manipulated in magnetic field for removal and separation of cationic dyes from aqueous solution. Adsorption process agreed very well with the Langmuir and Freundlich models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
This study demonstrates the adsorption experiments of toxic dyes malachite green (MG) and Rhodamine B (RB) on Fe3O4-loaded activated carbon (AC). AC, which is known to be a high-capacity adsorbent, was aimed to be easily separated from aqueous media by loading it with Fe3O4. Fe3O4-loaded AC was prepared by the coprecipitation method and named magnetic activated carbon (M-AC), and the produced M-AC was characterized by x-ray diffraction (XRD), thermogravimetric analysis (TGA), and pHpzc analyses. MG and RB adsorption by the M-AC was performed separately by batch technique and the effects of adsorbent amount, solution pH, and initial dye concentration on the adsorption were explored. Maximum removal efficiencies were found to be 96.11% for MG and 98.54% for RB, and the Langmuir isotherm model was the most fitted isotherm model for the adsorption. The kinetic and thermodynamic studies showed that the adsorption proceeded via the pseudo-second-order kinetic model and endothermic in-nature for both dyes.  相似文献   

12.
Two types of magnetite (Fe3O4) nanoparticles were investigated as adsorbents for the simultaneous removal of Pb(II), Cd(II), and As(III) metal ions from aqueous solution. Magnetite nanoparticles were prepared by two synthesis procedures, both using water as solvent, and are referred to as conventional Fe3O4 nanoparticles and green Fe3O4 nanoparticles. The latter used Citrus limon (lemon) aqueous peel extract as the surfactant. Box–Behnken experimental design was used to investigate the effects of parameters such as initial concentration (20–150?mg?L?1), pH (2–9), and biomass dosage (1–5?g?L?1) on the removal of Pb(II), Cd(II), and As(III) ions. The optimum parameters for removal of the studied metal ions from aqueous solutions, including the initial ion concentration (20?mg?L?1), pH (5.5) and adsorbent dose (5?g?L?1), were determined. The pseudosecond-order model exhibited the best fit for the kinetic studies, while adsorption equilibrium isotherms were best described by Langmuir and Freundlich models. The optimum conditions were applied for the treatment wastewater. The removal efficiencies of Pb(II), Cd(II), and As(III) using the conventional and green synthesized Fe3O4 nanoparticles were 59.4?±?4.3, 18.7?±?1.9 and 17.5?±?1.6, and 98.8?±?5.6, 46.0?±?1.3, and 48.2?±?2.6%, respectively. These results demonstrate the potential of magnetite nanoparticles synthesized using C. limon peel extract as highly efficient adsorbents for the removal of Pb(II), Cd(II), and As(III) ions from aqueous solution.  相似文献   

13.
The utilization of modified magnetite nanoparticles (Fe3O4 NPs) with a cationic surfactant (cetyltrimethylammonium bromide (CTAB)) as an efficient adsorbent was successfully carried out to remove reactive black 5 (RBBA), reactive red 198 (RRR) and reactive blue 21 (RTB) dyes from aqueous solutions. First, a reactor was designed to be simple, repeatable and efficient in its synthesis of Fe3O4 NPs via co-precipitation method. Then, an orthogonal array design (OAD), four factor-four level (44) matrix was applied to assign affecting factors on removing of the dyes from aqueous solutions. The obtained results from ANOVA showed that the amount of CTAB and NaCl% significantly affect the adsorption of RBBA, RRR and RTB dyes. The sorption kinetics of the dyes were best described by a second-order kinetic model, suggesting chemisorptions mechanism. Also, dye adsorption equilibrium state data were fitted well to the Langmuir isotherm rather than Freundlich isotherm. Also, the maximum monolayer capacity, qmax, obtained from the Langmuir was 312.5, 163.9 and 556.2 mg g-1 for RBBA, RRR and RTB, respectively. The obtained results in the present study indicated that the CTAB-coated Fe3O4 NPs can be an efficient adsorbent material for removal of reactive dyes form aqueous solutions.  相似文献   

14.
Fe3O4 magnetic nanoparticles were synthesized by co-precipitation method. The structural characterization showed an average nanoparticle size of 8 nm. The synthesized Fe3O4 nanoparticles were tested for the treatment of synthetic aqueous solutions contaminated by metal ions, i.e. Pb(II), Cu(II), Zn(II) and Mn(II). Experimental results show that the adsorption capacity of Fe3O4 nanoparticles is maximum for Pb(II) and minimum for Mn(II), likely due to a different electrostatic attraction between heavy metal cations and negatively charged adsorption sites, mainly related to the hydrated ionic radii of the investigated heavy metals. Various factors influencing the adsorption of metal ions, e.g., pH, temperature, and contacting time were investigated to optimize the operating condition for the use of Fe3O4 nanoparticles as adsorbent. The experimental results indicated that the adsorption is strongly influenced by pH and temperature, the effect depending on the different metal ion considered.  相似文献   

15.
Thiol-functionalized Fe3O4/SiO2 microspheres (Fe3O4/SiO2-SH) with high saturation magnetization (69.3 emu g–1), superparamagnetism, and good dispersibility have been prepared by an ethylene glycol reduction method in combination with a modified Stöber method. The as-prepared composite magnetic spheres are characterized with fourier transform infrared spectroscopy (FT-IR), zeta potential, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and superconducting quantum interference magnetometer, and tested in separation of Au(III) ions from aqueous solutions. The data for Au(III) adsorption on Fe3O4/SiO2-SH are analyzed with the Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm models, and the pseudo-first-order, pseudo-second-order, and intraparticle diffusion kinetics models. The adsorption behaviors of Au(III) on Fe3O4/SiO2-SH follow the Langmuir isotherm model, and the adsorption process conforms to the pseudo-second-order kinetic model. The maximum adsorption capacity of Au(III) on Fe3O4/SiO2-SH is 43.7 mg g–1. Acetate anions play an important role yet Cu(II) ions have little interference in the adsorption of Au(III) on the adsorbent. A satisfactory recovery percentage of 89.5% is acquired by using an eluent with 1 M thiourea and 5% HCl, although thiols have a high affinity to Au(III) ions based on the hard-soft acid-base (HSAB) theory by Pearson.  相似文献   

16.
A typical superparamagnetic nanoparticles-based dithiocarbamate absorbent (Fe3O4@SiO2-DTC) with core-shell structure was applied for aqueous solution heavy metal ions Ni2+, Cu2+ removal.  相似文献   

17.
This study involved the utilization of a free radical-graft copolymerization reaction for the development of a novel adsorbent, namely, poly(butyl methacrylate)-grafted alginate/Fe3O4 nanocomposite (PBMA-gft-Alg/Fe3O4). Transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray analysis, X-ray diffraction patterns analysis, and Fourier transform infrared spectroscopy (FT-IR) were carried out for the characterization of Fe3O4 NPs and PBMA-gft-Alg/Fe3O4 nanocomposites. The capability of nanocomposites and nanoparticles to adsorb dyes such as MG and MB, resulting in their removal from aqueous media, was evaluated under different conditions such as pH, temperature, contact time, and dose of adsorbent. Optimum parameters for adsorption of dyes were found to be pH of 10, 50°C, contact time of 180 min, and 0.2 g of adsorbent. Efficiency of the PBMA-gft-Alg/Fe3O4 nanocomposite was found to be significantly greater than that of Fe3O4 NPs for eliminating the desired dye. Langmuir, Freundlich, Sips, and Temkin models were used for testing the experimental data. Freundlich model was the one that best described the adsorption.  相似文献   

18.
In the present work, functionalized magnetic nano-adsorbent with amine groups (Fe3O4@SiO2@NH2) was prepared for the simultaneous removal of 2,4-Dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA) from aqueous solution. Characterization such as Fourier transform infrared spectroscopy, vibrating sample magnetometry, and scanning electron microscope confirmed that the magnetic nanoparticles structure of Fe3O4@SiO2 nano-adsorbent was successfully functionalized by amine groups. The impact of some influencing parameters such as contact time, pH, adsorbent dosage, 2,4-D and MCPA initials concentration and solution temperature were studied. The equilibrium data were analyzed by Langmuir and Freundlich adsorption isotherms and also two models kinetically of pseudo-first-order and pseudo-second-order. Findings of the present study showed that the synthesized amino-functionalized MNPs will be helpful in use as an effective recyclable adsorbent for the removal of phenoxy acid herbicides from aqueous solution due to its advantages such as facile and rapid separation of target molecules from solution.  相似文献   

19.
Fe3O4/chitosan/poly(acrylic acid) (Fe3O4/CS/PAA) composite particles, which are reusable, biodegradable and of high adsorption capacity, have been prepared through polymerizing acrylic acid in chitosan and Fe3O4 nanoparticles aqueous solution. By varying in-feed mole ratio of carboxyl to amino group (nc/na) and reactant concentration, the average diameter of Fe3O4/CS/PAA composite particles can be controlled to vary from 100 to 300 nm. FT-IR, XRD and TEM were used to characterize Fe3O4/CS/PAA composite particles. Results showed that Fe3O4 was indeed incorporated into CS/PAA particles. The composite particles showed high efficient to remove copper ions (II) in aqueous solution. Adsorption kinetic studies showed that the adsorption process followed a pseudo-second-order kinetic model and the equilibrium data agreed well with the Langmuir model. The saturated adsorption capacity obtained from the experimental was 193 mg/g in close to proximity to the data 200 mg/g calculated from Langmuir model. The saturated adsorption capacity still retained 100 mg/g after three cycles of adsorption–desorption of copper ions (II).  相似文献   

20.
The core–shell structure Fe3O4/SiO2 magnetic microspheres were prepared by a sol–gel method, and immobiled with iminodiacetic acid (IDA) as metal ion affinity ligands for protein adsorption. The size, morphology, magnetic properties and surface modification of magnetic silica nanospheres were characterized by various modern analytical instruments. It was shown that the magnetic silica nanospheres exhibited superparamagnetism with saturation magnetization values of up to 58.1 emu/g. Three divalent metal ions, Cu2+, Ni2+ and Zn2+, were chelated on the Fe3O4@SiO2–IDA magnetic microspheres to adsorb lysozyme. The results indicated that Ni2+‐chelating magnetic microspheres had the maximum adsorption capacity for lysozyme of 51.0 mg/g, adsorption equilibrium could be achieved within 60 min and the adsorbed protein could be easily eluted. Furthermore, the synthesized Fe3O4@SiO2–IDA–Ni2+ magnetic microspheres were successfully applied for selective enrichment lysozyme from egg white and His‐tag recombinant Homer 1a from the inclusion extraction expressed in Escherichia coli. The result indicated that the magnetic microspheres showed unique characteristics of high selective separation behavior of protein mixture, low nonspecific adsorption, and easy handling. This demonstrates that the magnetic silica microspheres can be used efficiently in protein separation or purification and show great potential in the pretreatment of the biological sample. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号