首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Mesoporous anatase TiO2 microspheres were prepared via solvothermal method. Ammonium tungstate was used as the W source, and ammonia gas flowing in an ammonothermal reactor as the N source for codoping. TiO2:(W,N) mesoporous microspheres, which were prepared from solvothermal treatment at 160 °C for 16 h and thermal ammonolysis at 500 °C for 2 h after calcination, have high specific surface area of 106 m2 g−1. XPS results indicate the presence of NO, Ni and W6+ in the codoped mesoporous TiO2 microspheres. Monodoping with N shifts the absorption band edge of anatase TiO2 from ultraviolet region to visible region. Although codoping with W makes the visible light absorbance decrease a little, the photocatalytic degradation of a cationic dye rhodamine B (RhB) on mesoporous TiO2:(W,N) microspheres is increased to 1.7 times of that on mesoporous TiO2:N microspheres. This may due to decreasing recombination centers by W-doping charge compensation.  相似文献   

2.
Mesoporous TiO2?xAy (A = N, S) thin films were fabricated using thiourea as a doping resource by a combination of sol-gel and evaporation-induced self-assembly (EISA) processes. The results showed that thiourea could serve two functions of co-doping nitrogen and sulfur and changing the mesoporous structure of TiO2 thin films. The resultant mesoporous TiO2?xAy (A = N, S) exhibited anatase framework with a high porosity and a narrow pore distribution. The formation of the O–Ti–N and O–Ti–S bonds in the mesoporous TiO2?xAy (A = N, S) were substantiated by the XPS spectra. A new bandgap in visible light region (520 nm) corresponding to 2.38 eV could be formed by the co-doping. After being illuminated for 3 h, methyl orange could be degraded nearly completely by the co-doped sample under both ultraviolet irradiation and visible light illumination. While pure mesoporous TiO2 could only degrade 60% methyl orange under UV illumination and showed negligible photodegradation capability in the visible light range. Furthermore, the photo-induced hydrophilic activity of TiO2 film was improved by the co-doping. The mesoporous microstructure and high visible light absorption could be attributed to their good photocatalytic acitivity and hydrophilicity.  相似文献   

3.
N, B, Si-tridoped mesoporous TiO2, together with N-doped, N, B-codoped and N, Si-codoped TiO2, was prepared by a modified sol–gel method. The samples were characterized by wide-angle X-ray diffraction (WAXRD), N2 adsorption–desorption, transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, UV–visible adsorbance spectra (UV–vis) and X-ray photoelectron spectra (XPS). The N, B, Si-tridoped mesoporous TiO2 showed small crystallite size, large specific surface area (350 m2/g), uniform pore distribution (3.2 nm) and strong absorption in the visible light region. The photocatalytic activities of the samples were evaluated by the photodegradation of 2,4-dichlorophenol (2,4-DCP) aqueous solution. The N, B, Si-tridoping sample exhibited much higher photocatalytic activity compared with other synthesized photocatalysts. The high activity could be attributed to the strong absorption in the visible light region, large specific surface area, small crystallite size, large amount of surface hydroxyl groups, and mesoporosity.  相似文献   

4.
Hierarchical macro‐/mesoporous N‐doped TiO2/graphene oxide (N‐TiO2/GO) composites were prepared without using templates by the simple dropwise addition mixed solution of tetrabutyl titanate and ethanol containg graphene oxide (GO) to the ammonia solution, and then calcined at 350 °C. The as‐prepared samples were characterized by scanning electron microscopy (SEM), Brunauer‐Emmett‐Teller (BET) surface area, X‐ray diffraction (XRD), Raman spectroscopy, X‐ray photoelectron spectroscopy (XPS), and UV‐Vis absorption spectroscopy. The photocatalytic activity was evaluated by the photocatalytic degradation of methyl orange in an aqueous solution under visible‐light irradiation. The results show that N‐TiO2/GO composites exhibited enhanced photocatalytic activity. GO content exhibited an obvious influence on photocatalytic performance, and the optimal GO addition content was 1 wt%. The enhanced photocatalytic activity could be attributed to the synergetic effects of three factors including the improved visible light absorption, the hierarchical macro‐mesoporous structure, and the efficient charge separation by GO.  相似文献   

5.
Fe3+ doped mesoporous TiO2 with ordered mesoporous structure were successfully prepared by the solvent evaporation-induced self-assembly process using P123 as soft template. The properties and structure of Fe3+ doped mesoporous TiO2 were characterized by means of XRD, EPR, BET, TEM, and UV–vis absorption spectra. The characteristic results clearly show that the amount of Fe3+ dopant affects the mesoporous structure as well as the visible light absorption of the catalysts. The photocatalytic activity of the prepared mesoporous TiO2 was evaluated from an analysis of the photodegradation of methyl orange under visible light irradiation. The results indicate that the sample of 0.50%Fe–MTiO2 exhibits the highest visible light photocatalytic activity compared with other catalysts.  相似文献   

6.
Nitrogen-modified cobalt-doped TiO2 materials were successfully prepared via a modified sol–gel method. The structure and properties of the catalysts were characterized via X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM, ultraviolet–visible light diffuse reflectance spectra (UV–Vis DRS), N2 adsorption–desorption isotherms, and energy-dispersive X-ray spectroscopy. The XRD patterns of the pure and co-doped TiO2 samples indicate that the predominant phase was anatase. The average grain size obtained from TEM was approximately 10 nm. The Brunauer–Emmett–Teller analysis results indicate that the specific surface area was 77.7 m2 g?1. The UV–Vis DRS results for the co-doped sample reveal an absorption edge that had been red-shifted to 500 nm. The photocatalytic activities of the samples were evaluated through photodegradation of papermaking wastewater under UV and visible light irradiation. Compared with the cobalt-doped TiO2 sample and Degussa P25, the 3 mol% N-doped mesoporous N/Co-TiO2 photocatalyst exhibited the highest photocatalytic activity, which can be ascribed to the synergistic effect of the N and Co co-doping.  相似文献   

7.
Mesoporous RuO2–TiO2 nanocomposites at different RuO2 concentrations (0–10 wt %) are prepared through a simple one‐step sol–gel reaction of tetrabutyl orthotitanate with ruthenium(III) acetylacetonate in the presence of an F127 triblock copolymer as structure‐directing agent. The thus‐formed RuO2–TiO2 network gels are calcined at 450 °C for 4 h leading to mesoporous RuO2–TiO2 nanocomposites. The photocatalytic CH3OH oxidation to HCHO is chosen as the test reaction to examine the photocatalytic activity of the mesoporous RuO2–TiO2 nanocomposites under UV and visible light. The photooxidation of CH3OH is substantially affected by the loading amount and the degree of dispersion of RuO2 particles onto the TiO2, which indicates the exclusive effect of the RuO2 nanoparticles on this photocatalytic reaction under visible light. The measured photonic efficiency ξ=0.53 % of 0.5 wt % RuO2–TiO2 nanocomposite for CH3OH oxidation is maximal and the further increase of RuO2 loading up to 10 wt % gradually decreases this value. The cause of the visible‐light photocatalytic behavior is the incorporation of small amounts of Ru4+ into the anatase lattice. On the other hand, under UV light, undoped TiO2 shows a very good photonic efficiency, which is more than three times that for commercial photocatalyst, P‐25 (Evonik–Degussa); however, addition of RuO2 suppresses the photonic efficiency of TiO2. The proposed reaction mechanism based on the observed behavior of RuO2–TiO2 photocatalysts under UV and visible light is explored.  相似文献   

8.
Highly crystalline mesoporous TiO2 microspheres with areas up to 122 m2/g and tunable pore size have been prepared through a combined sol–gel and solvothermal processes. The concentration of NaF exhibits a great effect on the morphology, crystallinity, crystal size and photocatalytic activity of the TiO2 microspheres. A higher NaF concentration results in an increase in the average crystal size and pore size, whereas whereas it caused a decrease in the specific surface areas. All fluorinated TiO2 microspheres showed a higher photocatalytic activity than P25 and pure TiO2 microspheres obtained in the absence of NaF due to the effect of surface fluorination on the photoactivity of TiO2. The approach described in this study provides a simple method to synthesize the micrometer-sized hierarchical structure of mesoporous TiO2 microspheres that are ready for practical applications such as environmental pollutants removal and solar cell because these high active materials can be easily separated.  相似文献   

9.
TiO2 microspheres were synthesized by the sol–gel method using the ionic liquid (IL) 1-vinyl-3-propylimidazolium iodide (VPIM+I?) as a reaction medium, then calcined at 500 °C. The samples were characterized by X-ray diffraction, scanning electron microscopy, and ultraviolet–visible (UV–Vis) diffuse reflectance spectroscopy. The phase of TiO2 microspheres is anatase, and VPIM+I? is able to favor the growth of anatase phase and prevents the collapse of small pores. The photocatalytic activity of TiO2-IL was tested by degradation of 2-nitrophenol under UV light illumination. The photocatalytic activity of TiO2-IL was higher than that of samples prepared in the reaction medium without VPIM+I?.  相似文献   

10.
采用超声波辐射法制备了具有介孔结构的高浓度氮掺杂TiO2纳米晶(N/TiO2).采用N2物理吸附、X射线粉末衍射、X射线光电子能谱、透射电镜、光致发光谱和紫外-可见漫反射光谱等手段对N/TiO2进行了表征.以波长为400~660nm的可见光为光源,以水体污染物邻苯二甲酸二甲酯为降解对象,考察了不同制备方法对N/TiO2光催化性能的影响.结果表明,超声波辐射使氮掺杂浓度提高了2.2倍,该法制备的N/TiO2同时具有较好的介孔结构,表现了更高的光催化降解邻苯二甲酸二甲酯的活性.其活性提高的主要原因是N/TiO2含有更高浓度的氮和对可见光具有更强的吸收能力.  相似文献   

11.
Lanthanum doped mesoporous titanium dioxide photocatalysts with different La content were synthesized by template method using tetrabutyltitanate (Ti(OC4H9)4) as precursor and Pluronic P123 as template. The catalysts were characterized by thermogravimetric dif-ferential thermal analysis, N2 adsorption-desorption measurements, X-ray diffraction, and UV-Vis adsorption spectroscopy. The effect of La3+ doping concentration from 0.1% to 1% on the photocatalytic activity of mesoporous TiO2 was investigated. The characterizations indicated that the photocatalysts possessed a homogeneous pore diameter of about 10 nm with high surface area of 165 m2/g. X-ray photoelectron spectroscopy measurements in-dicated the presence of C in the doped samples in addition to La. Compared with pure mesoporous TiO2, the La-doped samples extended the photoabsorption edge into the visible light region. The results of phenol photodecomposition showed that La-doped mesoporous TiO2 exhibited higher photocatalytic activities than pure mesoporous TiO2 under UV and visible light irradiation.  相似文献   

12.
Cu and N-doped TiO2 photocatalysts were synthesized from titanium (IV) isopropoxide via a microwave-assisted sol-gel method. The synthesized materials were characterized by X-ray diffraction, UV-vis diffuse reflectance, photoluminescence (PL) spectroscopy, SEM, TEM, FT-IR, Raman spectroscopy, photocurrent measurement technique, and nitrogen adsorption–desorption isotherms. Raman spectra and XRD showed an anatase phase structure. The SEM and TEM images revealed the formation of an almost spheroid mono disperse TiO2 with particle sizes in the range of 9-17 nm. Analysis of N2 isotherm measurements showed that all investigated TiO2 samples have mesoporous structures with high surface areas. The optical absorption edge for the doped TiO2 was significantly shifted to the visible light region. The photocurrent and photocatalytic activity of pure and doped TiO2 were evaluated with the degradation of methyl orange (MO) and methylene blue (MB) solution under both UV and visible light illumination. The doped TiO2 nanoparticles exhibit higher catalytic activity under each of visible light and UV irradiation in contrast to pure TiO2. The photocatalytic activity and photocurrent ability of TiO2 have been enhanced by doping of the titania in the following order: (Cu, N) - codoped TiO2 > N-doped TiO2 > Cu-doped TiO2 > TiO2. COD result for (Cu, N)-codoped TiO2 reveals ∼92% mineralization of the MO dye on six h of visible light irradiation.  相似文献   

13.
We successfully prepared Ag quantum dots modified TiO2 microspheres by facile solvothermal and calcination method. The as-prepared Ag quantum dots/TiO2 microspheres were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The Ag quantum dots/TiO2 photocatalyst showed excellent visible light absorption and efficient photocatalytic activity for methyl orange degradation. And the sample with the molar ratio of 0.05 (Ag to Ti) showed the best visible light photocatalytic activity for methyl orange degradation, mainly because of the surface plasmon resonance (SPR) effects of Ag quantum dots to generate electron and hole pairs for enhanced visible light photocatalysis. Finally, possible visible light photocatalytic mechanism of Ag quantum dots/TiO2 microspheres for methyl orange degradation was proposed in detail.  相似文献   

14.
Nitrogen-doped TiO2 nanoparticle photocatalysts were obtained by an annealing method with gaseous ammonia and nitrogen. The influence of dopant N on the crystal structure was characterized by XRD, XPS, BET, TEM and UV-Vis spectra. The results of XRD indicate that, the crystal phase transforms from anatase to rutile structure gradually with increase of annealing temperature from 300 to 700 ℃. XPS studies indicate that the nitrogen atom enters the TiO2 lattice and occupies the position of oxygen atom. Agglomeration of particles is found in TEM images after annealing. BET results show that the specific surface areas of N-doped samples from 44.61 to 38.27 m2/g are smaller than that of Degussa TiO2. UV-Vis spectra indicate that the absorption threshold shifts gradually with increase of annealing temperature, which shows absorption in the visible region. The influence of annealing condition on the photocatalytic property has been researched over water decomposition to hydrogen, indicating that nitrogen raises the photocatalytic activity for hydrogen evolution, and the modified TiO2 annealed for 2 h at 400 ℃ under gas of NH3/N2 (V/V=1/2) mixture shows better efficiency of hydrogen evolution. Furthermore, the N-doped TiO2 nanoparticle catalysts have obvious visible light activity, evidenced by hydrogen evolution under visible light (λ>400 nm) irradiation. However, the catalytic activity under visible light irradiation is absent for Degussa as reference and the N-doped TiO2 annealed at 700 ℃.  相似文献   

15.
Stabilized mesoporous TiO2 was synthesized by evaporation induced self assembly (EISA) method and mechanically incorporated into single-walled carbon nanotubes (SWCNT) with different ratios. The physicochemical properties of the nanocomposites (mesoporous TiO2/SWCNT) materials were investigated by Brunauer–Emmett–Teller (BET) measurement, X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), photoluminescence (PL) and ultraviolet–visible (UV–Vis) spectroscopy measurements. The catalytic activity of mesoporous TiO2 and nanocomposites were assessed by examining the degradation of rhodamine B as model aqueous solution under visible light. CNTs are facilitating the photocatalytic activity of mesoporous TiO2 in the degradation of rhodamine B efficiently.  相似文献   

16.
Mesoporous TiO2 has been synthesized by the sol–gel method, using a nonionic triblock copolymer P123 as surfactant template under acidic conditions. The as-prepared samples were characterized by thermogravimetry–differential thermal analysis (TG–DTA), nitrogen absorption–desorption (BET), field emission scanning electron microscopy, and transmission electron microscopy. The photocatalytic activity of the mesoporous TiO2 was evaluated by degradation of methylene blue under high-intensity UV light irradiation; the amount of methylene blue was measured by UV–visible spectroscopy. TG–DTA analysis revealed that the surfactant had been removed partly in as-synthesized samples. BET analysis proved that all the samples retained mesoporosity with a narrow pore-size distribution (4.5–6.3 nm) and high surface area (103–200 m2/g). All calcined mesoporous TiO2 had high photocatalytic activity in the photodegradation of methylene blue.  相似文献   

17.
《Comptes Rendus Chimie》2015,18(8):875-882
W–S–N-tri-doped TiO2 photocatalysts (WSNTiO2) were prepared by a simple sol–gel method. Tungstic acid, sodium sulfate and urea were used as tungsten, sulfur and nitrogen sources, respectively. The morphology and microstructure characteristics of the photocatalysts were evidenced by means of XRD, BET, TEM, SEM and UV–vis DRS techniques. The XRD results show that the main crystal phase of samples is anatase. It was also found that the tri-doping of TiO2 increases its BET specific surface area from 95 to 121 m2·g−1. Besides, it was shown that tri-doping narrows the band gap of TiO2 effectively, which has greatly improved the photocatalytic activity in the visible light region. The photocatalytic activity of tri-doped TiO2 powders was compared to that of bi-doped ones through the degradation of Congo Red (CR) under visible irradiation. Thus, the prepared 0.5% W–N–S–TiO2 heat treated at 450 °C showed the best photocatalytic activity compared to the prepared pure TiO2, Degussa P25, and co-doped samples (WNTiO2 and WSTiO2). In particular, a Congo Red degradation rate of approximately 99% was reached after only 35 min of visible light irradiation in the presence of 0.5% of WNSTiO2. Total organic carbon (TOC) removal of CR was up to 72% and confirmed its significant mineralization in the presence of 0.5% of WNSTiO2 photocatalyst.  相似文献   

18.
The need for renewable energy focuses attention on hydrogen obtained by using sustainable and green methods. The sustainable compound glycerol can be used for hydrogen production by heterogeneous photocatalysis. A novel approach involves the promotion of the TiO2 photocatalyst with a binary combination of nitrogen and transition metal. We report the synthesis and spectroscopic characterization of the new N‐M‐TiO2 photocatalysts (M=none, Cr, Co, Ni, Cu), and the photocatalytic reforming of glycerol to hydrogen under ambient conditions and near‐UV or visible light versus benchmark P25 TiO2. In units of activity μmol m?2 h?1, N‐Ni‐TiO2 is five‐fold more active than P25, and N‐Cu‐TiO2 is 44‐fold more active. The photocatalytic activity of N‐M‐TiO2 increases from Cr to Co and Ni, whereas the photoluminescence decreases; the change in activity is due to the modulation of charge recombination.  相似文献   

19.
Using a new nitrogen precursor of a mixture of ammonia and hydrazine hydrate, N-doped TiO2 photocatalyst with a high efficiency under visible light was synthesized by a precipitation method. The analysis of X-ray photoelectron spectroscopy (XPS) suggested that the doping concentration of nitrogen was 0.45 at%, while it was 0.21 at% or 0.24 at% using single ammonia or hydrazine hydrate as nitrogen precursor. The patterns of the electron paramagnetic resonance spectroscopy (EPR) indicated that the paramagnetic species of NO22?, NO and Ti3+ existed as the proposed active species. The ultraviolet–visible (UV–vis) spectra revealed that the band-gap of the N-doped TiO2 was 3.12 eV, which was slightly lower than 3.15 eV of pure TiO2. The N-doped TiO2 showed higher efficiency under both ultraviolet (UV) and visible light irradiations. Moreover, the degradation grade of 4-chlorophenol (4-CP) using the as-synthesized N-doped TiO2 under sunlight irradiation for 6 h was 82.0%, which was higher than 66.2% of the pure TiO2, 60.1% or 65.2% of the N-doped TiO2 using single ammonia or hydrazine hydrate as precursor. Density functional theory (DFT) calculations were performed to investigate the visible light response of the N-doped TiO2. Our study demonstrated that the visible activities vary well with the concentrations of NO22? species incorporated by N–TiO2 series photocatalysts and the higher activity of the as-prepared N-doped TiO2 was attributed to the enhancement of the concentration of NO22? species.  相似文献   

20.
Ultrasonic spray pyrolysis method was used to prepare Nb-doped TiO2 porous microspheres with an average diameter of 500 nm for solar photocatalytic applications. The effect of Nb-doping on morphology, structure, surface area, as well as spectral absorption properties of TiO2 microspheres was investigated with SEM, TEM, XRD, Raman spectra, BET, and UV-Vis absorption spectra. The Nb-doping decreased the grain size of TiO2 porous microsphere, and influenced its surface area and pore size distribution dependent on the doping concentration, but changed negligibly the morphology and size of TiO2 microspheres. Moreover, the Nb-doping was observed to extend the spectral absorption of TiO2 into visible spectrum, and the absorption onset was red-shifted for about 88 nm at a doping level of 5% compared to pristine TiO2 microspheres. Under solar or visible irradiation, Nb-doped TiO2 microspheres showed higher photocatalytic activity for methylene blue degradation compared with TiO2 microspheres, which could be ascribed to the extended light absorption range and the suppression of electron-hole pair recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号