首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel visible‐light‐driven decarboxylative coupling of alkyl N‐hydroxyphthalimide esters (NHP esters) with quinoxalin‐2(1H)‐ones has been developed. This C(sp2)?C(sp3) bond‐forming transformation exhibits excellent substrate generality with respect to both the coupling partners. Of note, a series of 3‐primary alkyl‐substituted quinoxalin‐2(1H)‐ones that were difficult to synthesize by previous methods could be obtained in moderate to excellent yields. Additionally, the mild conditions, easy availability of substrates, wide functional group tolerance and operational simplicity make this protocol practical in the synthesis of 3‐alkylated quinoxalin‐2(1H)‐ones.  相似文献   

2.
A transition-metal-free C(sp2)−C(sp2) bond formation reaction by the cross-coupling of diazo quinones with catechol boronic esters was developed. With this protocol, a variety of biaryls and alkenyl phenols were obtained in good to high yields under mild conditions. The reaction tolerates various functionalities and is applicable to the derivatization of pharmaceuticals and natural products. The synthetic utility of the method was demonstrated by the short synthesis of multi-substituted triphenylenes and three bioactive natural products, honokiol, moracin M, and stemofuran A. Mechanistic studies and density functional theory (DFT) calculations revealed that the reaction involves attack of the boronic ester by a singlet quinone carbene followed by a 1,2-rearrangement through a stepwise mechanism.  相似文献   

3.
《中国化学》2018,36(3):217-222
The first catalytic enantioselective C(sp)―C(sp3) cross‐coupling reaction between N‐tosylhydrazones and trialkylsilylethynes in the presence of Cu(I) salts and chiral phosphoramidite ligands was developed. A series of synthetically interesting, functionalized alkynes were obtained with moderate to good enantioselectivities (up to 83% ee). Cu(II) carbene migratory insertion is proposed to be the enantio‐determining step.  相似文献   

4.
This work reports a modular and rapid approach to the stereoselective synthesis of a variety of α‐ and β‐(1→2)‐linked C‐disaccharides. The key step is a Ni‐catalyzed cross‐coupling reaction of D ‐glucal pinacol boronate with alkyl halide glycoside easily prepared from commercially available D ‐glucal. The products of this sp2–sp3 cross‐coupling reaction can be converted to glucopyranosyl, mannopyranosyl, or 2‐deoxy‐glucopyranosyl C‐mannopyranosides by one‐ or two‐step stereoselective oxidative–reductive transformations. To the best of our knowledge, we demonstrated the first synthetic application of a challenging sp2–sp3 Suzuki‐Miyaura cross‐coupling reaction in carbohydrate chemistry.  相似文献   

5.
We report herein a new method for the photoredox activation of boronic esters. Using these reagents, an efficient and high‐throughput continuous flow process was developed to perform a dual iridium‐ and nickel‐catalyzed C(sp2)–C(sp3) coupling by circumventing solubility issues associated with potassium trifluoroborate salts. Formation of an adduct with a pyridine‐derived Lewis base was found to be essential for the photoredox activation of the boronic esters. Based on these results we were able to develop a further simplified visible light mediated C(sp2)–C(sp3) coupling method using boronic esters and cyano heteroarenes under flow conditions.  相似文献   

6.
The silver‐catalyzed oxidative C(sp3)−H/P−H cross‐coupling of 1,3‐dicarbonyl compounds with H‐phosphonates, followed by a chemo‐ and regioselective C(sp3)−C(CO) bond‐cleavage step, provided heavily functionalized β‐ketophosphonates. This novel method based on a readily available reaction system exhibits wide scope, high functional‐group tolerance, and exclusive selectivity.  相似文献   

7.
α‐Vinylation of phosphonates, phosphine oxides, sulfones, sulfonamides, and sulfoxides has been achieved by selective C?H zincation and copper‐catalyzed C(sp3)?C(sp2) cross‐coupling reaction using vinylphenyliodonium salts. The vinylation transformation proceeds in high efficiency and stereospecificity under mild reaction conditions. This zincative cross‐coupling reaction represents a general alkenylation strategy, which is also applicable for α‐alkenylation of esters, amides, and nitriles in the synthesis of β,γ‐unsaturated carbonyl compounds.  相似文献   

8.
Reported herein is the distal γ‐C(sp3)?H olefination of ketone derivatives and free carboxylic acids. Fine tuning of a previously reported imino‐acid directing group and using the ligand combination of a mono‐N‐protected amino acid (MPAA) and an electron‐deficient 2‐pyridone were critical for the γ‐C(sp3)?H olefination of ketone substrates. In addition, MPAAs enabled the γ‐C(sp3)?H olefination of free carboxylic acids to form diverse six‐membered lactones. Besides alkyl carboxylic acids, benzylic C(sp3)?H bonds also could be functionalized to form 3,4‐dihydroisocoumarin structures in a single step from 2‐methyl benzoic acid derivatives. The utility of these protocols was demonstrated in large scale reactions and diversification of the γ‐C(sp3)?H olefinated products.  相似文献   

9.
The first oxidative C(sp3)−H/C(sp3)−H cross‐dehydrogenative coupling (CDC) reaction promoted by an internal oxidant is reported. This copper‐catalyzed CDC reaction of oxime acetates and trifluoromethyl ketones provides a simple and efficient approach towards 2‐trifluoromethyldihydropyrrol‐2‐ol derivatives in a highly diastereoselective manner by cascade C(sp3)−C(sp3) bond formation and cyclization. These products were further transformed into various significant and useful trifluoromethylated heterocyclic compounds, such as trifluoromethylated furan, thiophene, pyrrole, dihydropyridazine, and pyridazine derivatives. A trifluoromethylated analogue of an Aβ42 lowering agent was also synthesized smoothly. Preliminary mechanistic studies indicated that this reaction involves a copper(I)/copper(III) catalytic cycle with the oxime acetate acting as an internal oxidant.  相似文献   

10.
Olefins and carboxylic acids are among the most important feedstock compounds. They are commonly found in natural products and drug molecules. We report a new reaction of nickel‐catalyzed decarboxylative olefin hydroalkylation, which provides a novel practical strategy for the construction of C(sp3)?C(sp3) bonds. This reaction can tolerate a variety of synthetically relevant functional groups and shows good chemo‐ and regioselectivity. It enables cross‐coupling of complex organic molecules containing olefin groups and carboxylic acid groups in a convergent fashion.  相似文献   

11.
The first Cp*RhIII‐catalyzed arylation of unactivated C(sp3)? H bonds is presented. The unactivated primary C(sp3)? H bond of 2‐alkylpyridines can be activated by RhIII and further reacts with triarylboroxines to efficiently build new C(sp3)? aryl bonds. The methodology also provides a facile and efficient synthesis of unsymmetrical triarylmethanes by RhIII‐catalyzed C(sp3)? H arylation of diarylmethanes.  相似文献   

12.
A high‐efficient and stereo‐specific approach for the preparation of biologically important (E)‐2‐styryl‐tetrahydrobenzo[d]thiazoles has been developed via TMSCl promoted direct sp3 C‐H alkenylation of 2‐methyl‐5,6‐dihydrobenzo[d]thiazol‐7(4H)‐one under metal‐free conditions. Seventeen target compounds were synthesized in excellent yields of 82% –98% under the optimal conditions of 300 mol% TMSCl at 110°C for 2 h, and their chemical structures were elucidated by IR, NMR, ESI‐MS, elemental analyses and X‐ray crystallography analysis. A plausible mechanism was also proposed, and this method provided a good functional group conversion for the sp3 C‐H substrates.  相似文献   

13.
Rollover cyclometalation involves bidentate heterocyclic donors, unusually acting as cyclometalated ligands. The resulting products, possessing a free donor atom, react differently from the classical cyclometalated complexes. Taking advantage of a “rollover”/“retro‐rollover” reaction sequence, a succession of oxidative addition and reductive elimination in a series of platinum(II) complexes [Pt(N,C)(Me)(PR3)] resulted in a rare C(sp2)?C(sp3) bond formation to give the bidentate nitrogen ligands 3‐methyl‐2,2′‐bipyridine, 3,6‐dimethyl‐2,2′‐bipyridine, and 3‐methyl‐2‐(2′‐pyridyl)‐quinoline, which were isolated and characterized. The nature of the phosphane PR3 is essential to the outcome of the reaction. This route constitutes a new method for the activation and functionalization of C?H bond in the C(3) position of bidentate heterocyclic compounds, a position usually difficult to functionalize.  相似文献   

14.
Late‐stage BODIPY diversification of structurally complex amino acids and peptides was accomplished by racemization‐free palladium‐catalyzed C(sp3)?H activation. Transformative fluorescence modification proved viable by triazole‐assisted C(sp3)?H arylation in a chemo‐ and site‐selective fashion, providing modular access to novel BODIPY peptide sensors.  相似文献   

15.
Alkyl aryl ethers are an important class of compounds in medicinal and agricultural chemistry. Catalytic C(sp3)?O cross‐coupling of alkyl electrophiles with phenols is an unexplored disconnection strategy to the synthesis of alkyl aryl ethers, with the potential to overcome some of the major limitations of existing methods such as C(sp2)?O cross‐coupling and SN2 reactions. Reported here is a tandem photoredox and copper catalysis to achieve decarboxylative C(sp3)?O coupling of alkyl N‐hydroxyphthalimide (NHPI) esters with phenols under mild reaction conditions. This method was used to synthesize a diverse set of alkyl aryl ethers using readily available alkyl carboxylic acids, including many natural products and drug molecules. Complementarity in scope and functional‐group tolerance to existing methods was demonstrated.  相似文献   

16.
A mild and selective C(sp3)?H aerobic oxidation enabled by decatungstate photocatalysis has been developed. The reaction can be significantly improved in a microflow reactor enabling the safe use of oxygen and enhanced irradiation of the reaction mixture. Our method allows for the oxidation of both activated and unactivated C?H bonds (30 examples). The ability to selectively oxidize natural scaffolds, such as (?)‐ambroxide, pregnenolone acetate, (+)‐sclareolide, and artemisinin, exemplifies the utility of this new method.  相似文献   

17.
An unprecedented MnI/AgI‐relay‐catalyzed C(sp2)?H/C(sp3)?H coupling of (vinyl)arenes with α‐diazoketones is reported, wherein the diazo group was exploited as a traceless auxiliary for control of regioselectivity. Challenging β‐(hetero)aryl/alkenyl ketones were obtained through this operationally simple approach. The cascade process merges denitrogenation, carbene rearrangement, C?H activation, and hydroarylation/hydroalkenylation. The robustness of this method was demonstrated at preparative scale and applied to late‐stage diversification of natural products.  相似文献   

18.
A metal‐free C(sp2)–C(sp2) cross‐coupling approach to highly congested (E)‐α‐naphtholylenals from simple naphthols and enals is described. The mild reaction conditions with pyridine hydrobromideperbromide (PHBP) as the bromination reagent in the presence of piperidine or diphenylprolinol trimethylsilyl (TMS) ether as promoters enable the process in good yields and with high chemoselectivity, regioselectivity, and stereoselectivity. The process involves an unprecedented pathway of in situ regioselective 4‐bromination of 1‐naphthols and the subsequent unusual aromatic nucleophilic substitution of the resulting 4‐bromo‐1‐naphthols with the α‐C(sp2) of enals through a Michael‐type Friedel–Crafts alkylation–dearomatization followed by a cyclopropanation ring‐opening cascade process. The noteworthy features of this strategy are highlighted by the highly efficient creation of a C(sp2)–C(sp2) bond from readily available unfunctionalized naphthols and enals catalyzed by non‐metal, readily available cyclic secondary amines under mild reaction conditions.  相似文献   

19.
PdII‐catalyzed intermolecular amination of unactivated C(sp3)?H bonds has been successfully developed for the first time. This method provides a new way to achieve the challenging intermolecular amination of unactivated C(sp3)?H bonds, producing a variety of unnatural β2‐amino carboxylic acid analogues. This C(sp3)?H amination protocol is demonstrated with a broad substrate scope, good functional‐group tolerance, and chemoselectivity. It is operated without use of phosphine ligand or external oxidant.  相似文献   

20.
《中国化学》2018,36(9):809-814
Organophosphorus compounds are essential structures in modern pharmaceutical, agrochemical, and material sciences. The development of new and efficient methods for the synthesis of C–P bonds has been an important focus of research. We herein report a Pd‐catalyzed enamido C(sp2)–H phosphorylation for direct construction of C–P bonds under simple and convenient conditions without the need for additional ligands or directing groups. The present reaction can tolerate a wide range of functional groups, and furnish a variety of phosphorylation products including tetrasubstituted‐vinyl β‐aminophosphonates that are otherwise difficult to access. This protocol was also exemplified into the late‐stage modification of bioactive natural products and was suitable for large‐scale synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号