首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ultra‐short peptide Boc‐L ‐Phe‐L ‐Lys(Z)‐OMe (Z=carbobenzyloxy) was shown to act as a highly efficient and versatile low molecular weight gelator (LMWG) for a variety of aliphatic and aromatic solvents under sonication. Remarkably, this simple dipeptide is not only able to form coiled fibres but also demonstrates self‐healing and thermal chiroptical switching behaviour. The formation of coiled assemblies was found to be influenced by the nature of the solvent and the presence of an additive. By exploiting these properties it was possible to modulate the macroscopic and microscopic properties of the organogels of this ultra‐short peptide, allowing the formation of highly ordered single‐domain networks of helical fibres with dimeric or alternatively fibre‐bundle morphology. The organogels were characterized by using FTIR, SEM, NMR and circular dichroism (CD) spectroscopy. Interestingly, CD experiments showed that the organogels of Boc‐L ‐Phe‐L ‐Lys(Z)‐OMe in aromatic solvents exhibit thermal chiroptical switching. This behaviour was hypothesized to stem from changes in the morphology of the gel accompanied by conformational transformation of the gelling agent. The fact that such a small peptide can demonstrate hierarchical assemblies and the possibility of controlling the self‐association is rather intriguing. The self‐healing ability, chiroptical switching and more importantly the formation of helical assemblies by Boc‐L ‐Phe‐L ‐Lys(Z)‐OMe under sonication, make this dipeptide an interesting example of the self‐assembly ability of ultra‐short peptides.  相似文献   

2.
Enantioresolution of the calcimimetic drug (R,S)‐Cinacalcet was achieved using both indirect and direct approaches. Six chiral variants of Marfey's reagent having l ‐Ala‐NH2, l ‐Phe‐NH2, l ‐Val‐NH2, l ‐Leu‐NH2, l ‐Met‐NH2 and d ‐Phg‐NH2 as chiral auxiliaries were used as derivatizing reagents under microwave irradiation. Derivatization conditions were optimized. Reversed‐phase high‐performance liquid chromatography was successful using binary mixtures of aqueous trifluoroacetic acid and acetonitrile for separation of diastereomeric pairs with detection at 340 nm. Thin silica gel layers impregnated with optically pure l ‐histidine and l ‐arginine were used for direct resolution of enantiomers. The limit of detection was found to be 60 pmol in HPLC while in TLC it was found to be in the range of 0.26–0.28 µg for each enantiomers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
A series of bis‐amides decorated with pyridyl and phenyl moieties derived from L ‐amino acids having an innocent side chain (L ‐alanine and L ‐phenyl alanine) were synthesized as potential low‐molecular‐weight gelators (LMWGs). Both protic and aprotic solvents were found to be gelled by most of the bis‐amides with moderate to excellent gelation efficiency (minimum gelator concentration=0.32–4.0 wt. % and gel–sol dissociation temperature Tgel=52–110 °C). The gels were characterized by rheology, DSC, SEM, TEM, and temperature‐variable 1H NMR measurements. pH‐dependent gelation studies revealed that the pyridyl moieties took part in gelation. Structure–property correlation was attempted using single‐crystal X‐ray and powder X‐ray diffraction data. Remarkably, one of the bis‐pyridyl bis‐amide gelators, namely 3,3‐Phe (3‐pyridyl bis‐amide of L ‐phenylalanine) displayed outstanding shape‐sustaining, load‐bearing, and self‐healing properties.  相似文献   

4.
Poly(l ‐lactic acid) is a linear aliphatic thermoplastic polyester that can be produced from renewable resources. A poly(l ‐lactic acid)‐modified silica stationary phase was newly prepared by amide bond reaction between amino groups on aminopropyl silica and carboxylic acid groups at the end of the poly(l ‐lactic acid) chain. The poly(l ‐lactic acid)‐silica column was characterized in reversed‐phase liquid chromatography and hydrophilic interaction liquid chromatography with the use of different mobile phase compositions. The poly(l ‐lactic acid)‐silica column was found to work in both modes, and the retention of test compounds depending on acetonitrile content exhibited “U‐shaped” curves, which was an indicator of reversed‐phase liquid chromatography/hydrophilic interaction liquid chromatography mixed‐mode retention behavior. In addition, carbonyl groups included into the poly(l ‐lactic acid) backbone work as an electron‐accepting group toward a polycyclic aromatic hydrocarbon and provide π–π interactions.  相似文献   

5.
Although the role of intermolecular aromatic π–π interactions in the self‐assembly of di‐l ‐phenylalanine (l ‐Phe‐l ‐Phe, FF), a peptide that is known for hierarchical structure, is well established, the influence of intramolecular π–π interactions on the morphology of the self‐assembled structure of FF has not been studied. Herein, the role of intramolecular aromatic π–π interactions is investigated for FF and analogous alanine (Ala)‐containing dipeptides, namely, l ‐Phe‐l ‐Ala (FA) and l ‐Ala‐l ‐Phe (AF). The results reveal that these dipeptides not only form self‐assemblies, but also exhibit remarkable differences in structural morphology. The morphological differences between FF and the analogues indicate the importance of intramolecular π–π interactions, and the structural difference between FA and AF demonstrates the crucial role of the nature of intramolecular side‐chain interactions (aromatic–aliphatic or aliphatic–aromatic), in addition to intermolecular interactions, in deciding the final morphology of the self‐assembled structure. The current results emphasise that intramolecular aromatic π–π interaction may not be essential to induce self‐assembly in smaller peptides, and π (aromatic)–alkyl or alkyl–π (aromatic) interactions may be sufficient. This work also illustrates the versatility of aromatic and a combination of aromatic and aliphatic residues in dipeptides in the formation of structurally diverse self‐assembled structures.  相似文献   

6.
l ‐Asparaginase (l ‐Asnase) can suppress the growth of malignant cells by rapid depletion of two essential amino acids, l ‐glutamine (l ‐Gln) and l ‐asparagine (l ‐Asn). To study the cytotoxic effect and the secondary complications of l ‐Asnase in the treatment of acute lymphoblastic leukemia, the development of a novel enzyme reactor of l ‐Asnase for the hydrolysis of l ‐Gln, employing the enzyme‐gold nanoparticle conjugates in capillary, was reported in this work. First, a microchip CE (MCE)‐LIF was established for the separation of l ‐amino acids (l ‐Gln and l ‐glutamic acid) and studying the hydrolysis of l ‐Gln by using l ‐Asnase enzyme reactor. Then, using l ‐Gln as target analyte, the enzyme kinetics of l ‐Asnase in free solution, enzyme‐gold nanoparticle conjugates (E‐GNP), and the enzyme‐gold nanoparticle conjugates immobilized in capillary (E‐GNP‐C) were investigated in detail with the proposed MCE‐LIF method. Moreover, for optimizing the enzymatic reaction efficiency, three important parameters, including the length of capillary, the enzyme concentration reacted with gold nanoparticle and the amount of l ‐Asnase immobilized on the gold nanoparticle, have been studied. Owing to the high specific activity, the E‐GNP‐C enzyme reactor exhibited the best performance for the hydrolysis of l ‐Gln.  相似文献   

7.
A new type of molecular arrangement for dipeptides is observed in the crystal structure of l ‐phenyl­alanyl‐l ‐alanine dihydrate, C12H16N2O3·2H2O. Two l ‐Phe and two l ‐Ala side chains aggregate into large hydro­phobic columns within a three‐dimensional hydrogen‐bond network.  相似文献   

8.
In this study, an adjustable pH‐responsive drug delivery system using mesoporous silica nanoparticles (MSNs) as the host materials and the modified polypeptides as the nanovalves is reported. Since the polypeptide can self‐assemble via electrostatic interaction at pH 7.4 and be disassembled by pH changes, the modified poly(l ‐lysine) and poly(l ‐glutamate) are utilized for pore blocking and opening in the study. Poly(l ‐lysine)‐MSN (PLL‐MSN) and poly(l ‐glutamate)‐MSN (PLG‐MSN) are synthesized via the ring opening polymerization of N‐carboxyanhydrides onto the surface of mesoporous silica nanoparticles. The successful modification of the polypeptide on MSN is proved by Zeta potential change, X‐ray photoelectron spectroscopy (XPS), solid state NMR, and MALDI‐TOF MS. In vitro simulated dye release studies show that PLL‐MSN and PLG‐MSN can successfully load the dye molecules. The release study shows that the controlled release can be constructed at different pH by adjusting the ratio of PLL‐MSN to PLG‐MSN. Cellular uptake study indicates that the drug is detected in both cytoplasm and nucleus, especially in the nucleus. In vitro cytotoxicity assay indicates that DOX loaded mixture nanoparticles (ratio of PLL‐MSN to PLG‐MSN is 1:1) can be triggered for drug release in HeLa cells, resulting in 88% of cell killing.  相似文献   

9.
Cyclic D,L ‐α‐peptides are able to self‐assemble to nanotubes, although the inherent reason of the stability of this kind of nanotube as well as the intrinsic driving force of self‐assembly of the cyclic D ,L ‐α‐peptides still remain elusive. In this work, using several computational approaches, we investigated the structural and energy characteristics of a series of cyclo[(‐L ‐Phe‐D ‐Ala‐)4] and cyclo[(‐L ‐Ala‐D ‐Ala‐)4] oligomers. The results reveal that the thermodynamic stability, cooperativity, and self‐assembly patterns of cyclic D ,L ‐α‐peptide nanotubes are mainly determined by the interactions between cross‐strand side chains instead of those between backbones. For cyclo[(‐L ‐Phe‐D ‐Ala‐)4] oligomers, the steric interaction between cross‐strand side chains, especially the electrostatic repulsion between the phenyls in Phe residues, brings anticooperative effect into parallel stacking mode, which is responsible for the preference of self‐assembling nanotube in antiparallel vs. parallel stacking orientation. Based on our results, a novel self‐assembling mechanism is put forward—it is the L ‐L antiparallel dimer of cyclo[(‐L ‐Phe‐D ‐Ala‐)4], instead of the commonly presumed monomer, that acts as the basic building block in self assembly. It explains why these cyclic peptides uniquely self‐assemble to form antiparallel nanotubes. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

10.
Mining microbial genomes including those of Streptomyces reveals the presence of a large number of biosynthetic gene clusters. Unraveling this genetic potential has proved to be a useful approach for novel compound discovery. Here, we report the heterologous expression of two similar P450‐associated cyclodipeptide synthase‐containing gene clusters in Streptomyces coelicolor and identification of eight rare and novel natural products, the C3‐guaninyl indole alkaloids guanitrypmycins. Expression of different gene combinations proved that the cyclodipeptide synthases assemble cyclo‐l ‐Trp‐l ‐Phe and cyclo‐l ‐Trp‐l ‐Tyr, which are consecutively and regiospecifically modified by cyclodipeptide oxidases, cytochrome P450 enzymes, and N‐methyltransferases. In vivo and in vitro results proved that the P450 enzymes function as key biocatalysts and catalyze the regio‐ and stereospecific 3α‐guaninylation at the indole ring of the tryptophanyl moiety. Isotope‐exchange experiments provided evidence for the non‐enzymatic epimerization of the biosynthetic pathway products via keto–enol tautomerism. This post‐pathway modification during cultivation further increases the structural diversity of guanitrypmycins.  相似文献   

11.
The racemization of d ‐aspartic acid to l ‐aspartic acid has been successfully performed with a coupled enzyme system at 90 °C and a pH of about 4.0 by the assay of high‐performance liquid chromatography. This coupled enzymatic racemization is a successive two‐step reaction first induced by d ‐amino acid oxidase and a subsequent coupled reaction by an aminotransferase clonezyme with the help of coenzyme pyridoxal 5′‐phosphate and cosubstrate l ‐glutamate. Due to the very high temperature, part of the l ‐aspartic acid is produced by the thermal effect. In fact the thermal racemization for aspartic acid can proceed from either d ‐ or l ‐aspartic acid via an intermediate fumaric acid and leads to the formation of d ,l ‐malic acid. The formation of α‐oxalacetic acid formed irreversibly from d ‐aspartic acid with d ‐amino acid oxidase can induce a side reaction to l ‐alanine. The thermal effect may also be responsible for the production of d ‐, and l ‐alanine.  相似文献   

12.
The Rose Bengal‐sensitized photooxidations of the dipeptides l ‐tryptophyl‐l ‐phenylalanine (Trp‐Phe), l ‐tryptophyl‐l ‐tyrosine (Trp‐Tyr) and l ‐tryptophyl‐l ‐tryptophan (Trp‐Trp) have been studied in pH 7 water solution using static photolysis and time‐resolved methods. Kinetic results indicate that the tryptophan (Trp) moiety interacts with singlet molecular oxygen (O2(1Δg)) both through chemical reaction and through physical quenching, and that the photooxidations can be compared with those of equimolecular mixtures of the corresponding free amino acids, with minimum, if any, influence of the peptide bond on the chemical reaction. This is not a common behavior in other di‐ and polypeptides of photooxidizable amino acids. The ratio between chemical (kr) and overall (kt) rate constants for the interaction O2(1Δg)‐dipeptide indicates that Trp‐Phe and Trp‐Trp are good candidates to suffer photodynamic action, with krlkt values of 0.72 and 0.60, respectively (0.65 for free Trp). In the case of Trp‐Tyr, a lower krlkt value (0.18) has been found, likely as a result of the high component of physical deactivation of O2(1Δg) by the tyrosine moiety. The analysis of the photooxidation products shows that the main target for O2(1Δg) attack is the Trp group and suggests a much lower accumulation of kynurenine‐type products, as compared with free Trp. This is possibly because of the occurrence of another accepted alternative pathway of oxidation that gives rise to 3a‐oxidized hydrogenated pyrrolo[2,3‐b]indoles.  相似文献   

13.
The N‐carboxyanhydrides (NCAs) of sarcosine (Sar), D ,L ‐leucine (D ,L ‐Leu), D ,L ‐phenylalanine (D ,L ‐Phe), and L ‐alanine (L ‐Ala) were polymerized in dioxane. Imidazole served as initiator and the NCA/initiator ratio was varied from 1/1 to 40/1. The isolated polypeptides were characterized by 1H NMR spectroscopy, by MALDI‐TOF mass spectrometry, by viscosity measurements, and by SEC measurements in the case of poly(sarcosine). Cyclic oligopeptides were found in all reaction products and in the case of polySar, poly(D ,L ‐Leu), and poly(D ,L ‐Phe) the cycles were the main products. In the case of poly(L ‐Ala), rapid precipitation of β‐sheet lamellaes prevented efficient cyclizations and stabilized imidazolide endgroups. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5690–5698, 2005  相似文献   

14.
In this study, poly(styrene‐co‐N‐methacryloyl‐l ‐phenylalanine methyl ester)‐functionalized magnetic nanoparticles were constructed and used as magnetic solid‐phase extraction sorbents for analysis of food preservatives in beverages. To prepare the poly(amino acid)‐based sorbents, N‐methacryloyl‐l ‐phenylalanine methyl ester, and styrene served as the functional monomers and modified onto the magnetic nanoparticles via free radical polymerization. Interestingly, compared with propylparaben and potassium sorbate, the proposed poly(amino acid)‐based sorbents showed a good selectivity to sodium benzoate. The adsorption capacity of the sorbents to sodium benzoate was 6.08 ± 0.31 mg/g. Moreover, the fast adsorption equilibrium could be reached within 5 min. Further, the resultant poly(amino acid)‐based sorbents were applied in the analysis of sodium benzoate in real beverage samples. The results proved that the proposed magnetic solid‐phase extraction sorbents have a great potential for the analysis of preservatives in food samples.  相似文献   

15.
Two new cyclic tetrapeptides, cyclo(l ‐Val‐l ‐Leu‐l ‐Val‐l ‐Ile) ( 1 ) and cyclo(l ‐Leu‐l ‐Leu‐l ‐Ala‐l ‐Ala) ( 2 ), and 15 known compounds, cyclo(Gly‐l ‐Leu‐Gly‐l ‐Leu) ( 3 ), cyclo(l ‐Ser‐l ‐Phe) ( 4 ), cyclo(l ‐Leu‐l ‐Ile) ( 5 ), cyclo(l ‐Tyr‐l ‐Phe) ( 6 ), cyclo(Gly‐l ‐Trp) ( 7 ), cyclo(l ‐Leu‐l ‐Tyr) ( 8 ), cyclo(Gly‐l ‐Phe) ( 9 ), cyclo(l ‐Phe‐trans‐4‐hydroxy‐l ‐Pro) ( 10 ), cyclo(l ‐Leu‐l ‐Leu) ( 11 ), cyclo(l ‐Val‐l ‐Phe) ( 12 ), cyclo(l ‐Val‐l ‐Leu) ( 13 ), cyclo(l ‐Ile‐l ‐Ile) ( 14 ), cyclo(l ‐Tyr‐l ‐Tyr) ( 15 ), turnagainolide A ( 16 ), and bacimethrin ( 17 ) were isolated from the fermentation broth of Streptomyces rutgersensis T009 obtained from Elaphodus davidianus excrement. Their structures were identified on the basis of spectroscopic analysis. Meanwhile, the absolute configurations of the amino acid residues of compounds 1 and 2 were determined by advanced Marfey method. Compound 3 was obtained from a natural source for the first time. The X‐ray single crystal diffraction data of bacimethrin ( 17 ) were also reported for the first time. Compounds 1  –  17 exhibited no antimicrobial activities with the MICs > 100 μg/ml.  相似文献   

16.
Dipeptide diphenylalanine has attracted significant research interests because of its ability to self‐assemble into various nanostructures such as nanotubes, nanowires, and nanoribbons. In this article, we present the synthesis and self‐assembly of a novel diphenylalanine‐based homopolymer and block/random copolymers by the reversible addition–fragmentation chain transfer (RAFT) polymerization of an acrylamide having a dipeptide moiety. The RAFT polymerization of N‐acryloyl‐l ,l ‐diphenylalanine (A‐Phe‐Phe‐OH) afforded novel amino acid‐based polymers with predetermined molecular weights and relatively narrow‐molecular weight distributions. The hierarchical self‐assembled structures of poly(A‐Phe‐Phe‐OH), which involve nanorods, larger nanofiber‐like microcrystals, and fiber bundles, were characterized by atomic force microscopy (AFM), transmission electron microscopy, scanning electron microscopy, and dynamic light scattering measurements. The circular dichroic measurements of poly(A‐Phe‐Phe‐OH) revealed its characteristic chiroptical property, which is affected by the nature of the solvents and the addition of urea and salts via hydrophobic, hydrogen bonding, and electrostatic interactions. Thermo‐ and pH‐responsive block and random copolymers composed of A‐Phe‐Phe‐OH and N‐isopropylacrylamide were synthesized by RAFT polymerization, and the thermoresponsive properties and assembled structures of the resulting copolymers were investigated by AFM and turbidity measurements. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2562–2574  相似文献   

17.
This study presents an efficient strategy based on liquid‐liquid extraction and pH‐zone‐refining counter‐current chromatography for selective enrichment, separation, and purification of alkaloids and organic acids from natural products. First, an acid or base modified two‐phase solvent system with maximum or minimum partition coefficient was developed for the liquid‐liquid extraction of the crude extract. As a result, alkaloids or organic acids could be selectively enriched in the upper or lower phase. Then pH‐zone‐refining counter‐current chromatography was employed to separate and purify the selectively enriched alkaloids or organic acids efficiently. The selective enrichment and separation of five bufadienolide from toad venom of Bufo marinus was used as an example to show the advantage of this strategy. As a result, 759 mg of selectively enriched bufadienolide was obtained from 2 g of crude extract and the total content of five targets was increased from 14.64 to 83%. A total of 31 mg of marinobufagin‐3‐adipoyl‐l ‐arginine, 42 mg of telocinobufagin‐3‐pimeloyl‐l ‐arginine, 51 mg of telocinobufagin‐3‐suberoyl‐l ‐arginine, 132 mg of marinobufagin‐3‐suberoyl‐l ‐arginine, and 57 mg of bufalin‐3‐suberoyl‐l ‐arginine were all simultaneously separated from 500 mg of selectively enriched sample, with the purity of 92.4, 97.5, 90.3, 92.1, and 92.8%, respectively.  相似文献   

18.
A series of tertiary aminosquaramides as bifunctional organocatalysts in the ring‐opening polymerization (ROP) of l ‐lactide (l ‐LA) were developed, allowing the activation of both the l ‐LA monomer and the alcohol group of the initiator/propagating species. Further, the impact of tertiary nitrogen substituents on catalytic activity in ROP of l ‐LA was explored. The tertiary aminosquaramide— an air‐stable and moisture‐stable catalyst—exhibited superior activity in contest with thiourea counterpart when both were equipped with a similar tertiary amine group. Kinetic and chain‐extension experiments indicated that the formed poly(l ‐LA) is featured with narrow polydispersity and high end‐group fidelity, hallmarks of a living polymerization process. The initiator efficiency was further executed at ease by preparation of an ABA triblock copolymer poly (l ‐LA)‐b‐poly (ethylene glycol)‐b‐poly (l ‐LA) in the presence of a dual‐headed PEG macroinitiator. 1H NMR titration experiments suggested a bifunctional catalytic mechanism, wherein both the l ‐LA monomer and the propagating hydroxyl group were activated en route to polymerization. The 1H NMR, SEC, and MALDI‐TOF MS measurements validated the quantitative incorporation of the initiator in the polymeric chains and enchainment over competitive trans‐esterification reaction. Overall, the structure‐activity relationships were surveyed to uncover aminosquaramide as a new bifunctional dual hydrogen‐bond donor catalyst for living ROP of l ‐LA. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2483–2493  相似文献   

19.
Biodegradable multi‐l ‐arginyl‐poly‐l ‐aspartate (MAPA), more commonly cyanophycin, prepared with recombinant Escherichia coli contains a polyaspartate backbone with lysine and arginine as side chains. Two assemblies of polyelectrolyte multilayers (PEMs) are fabricated at three different concentration ratios of insoluble MAPA (iMAPA) with hyaluronic acid (iMAPA/HA) and with γ‐polyglutamic acid (iMAPA/γ‐PGA), respectively, utilizing a layer‐by‐layer approach. Both films with iMAPA and its counterpart, HA or γ‐PGA, as the terminal layer are prepared to assess the effect on film roughness, cell growth, and cell migration. iMAPA incorporation is higher for a higher concentration of the anionic polymer due to better charge interaction. The iMAPA/HA films when compared to iMAPA/γ‐PGA multilayers show least roughness. The growth rates of L929 fibroblast cells on the PEMs are similar to those on glass substrate, with no supplementary effect of the terminal layer. However, the migration rates of L929 cells increase for all PEMs. γ‐PGA incorporated films impart 50% enhancement to the cell migration after 12 h of culture as compared to the untreated glass, and the smooth films containing HA display a maximum 82% improvement. The results present the use of iMAPA to construct a new layer‐by‐layer system of polyelectrolyte biopolymers with a potential application in wound dressing.  相似文献   

20.
Platinum‐based chemotherapy has been widely used to treat cancers including ovarian cancer; however, it suffers from dose‐limiting toxicity. Judiciously designed drug nanocarriers can enhance the anticancer efficacy of platinum‐based chemotherapy while reducing its systemic toxicity. Herein the authors report a stable and water‐soluble unimolecular nanoparticle constructed from a hydrophilic multi‐arm star block copolymer poly(amidoamine)‐b‐poly(aspartic acid)‐b‐poly(ethylene glycol) (PAMAM‐PAsp‐PEG) conjugated with both cRGD (cyclo(Arg‐Gly‐Asp‐D‐Phe‐Cys) peptide and cyanine5 (Cy5) fluorescent dye as a platinum‐based drug nanocarrier for targeted ovarian cancer therapy. Carboplatin is complexed to the poly(aspartic acid) inner shell via pH‐responsive ion–dipole interactions between carboplatin and the carboxylate groups of poly(aspartic acid). Based on flow cytometry and confocal laser scanning microscopy analyses, cRGD‐conjugated unimolecular nanoparticles exhibit much higher cellular uptake by ovarian cancer cells overexpressing αvβ3 integrin than nontargeted (i.e., cRGD‐lacking) ones. Carboplatin‐complexed cRGD‐conjugated nanoparticles also exhibit higher cytotoxicity than nontargeted nanoparticles as well as free carboplatin, while empty unimolecular nanoparticles show no cytotoxicity. These results indicate that stable unimolecular nanoparticles made of individual hydrophilic multi‐arm star block copolymer molecules conjugate with tumor‐targeting ligands and dyes (i.e., PAMAM‐PAsp‐PEG‐cRGD/Cy5) are promising nanocarriers for platinum‐based anticancer drugs for targeted cancer therapy.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号