首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first highly efficient and stereoselective difluoromethylation of structurally diverse N‐tert‐butylsulfinyl ketimines has been achieved with an in situ generated PhSO2CF2? anion, which provides a powerful synthetic method for the preparation of a variety of structurally diverse homochiral α‐difluoromethyl tertiary carbinamines, including α‐difluoromethyl allylic amines and α‐difluoromethyl propargylamines. The stereocontrol mode of the present diastereoselective difluoromethylation of ketimines was found to be different from that of other known fluoroalkylations of Ntert‐butylsulfinyl aldimines, which suggests that a cyclic six‐membered transition state may be involved in the reaction.  相似文献   

2.
2‐Diazo‐2H‐indoles were prepared by diazotization of the corresponding 1H‐indol‐2‐amines and subsequent neutralization. On the basis of NMR data and ab initio and semiempirical calculations, we suggest that the zwitterionic form A is the most representative structure for 2‐diazo‐2H‐indoles. In fact, spectral data are compatible with a 1H‐indole structure, and the fully optimized molecules gave distances in agreement with those reported for the anion obtained from 1H‐indole. The calculated charges are compatible with a zwitterionic structure in which the negative charge is mainly located at the ring N‐atom at variance with the case of diazopyrroles and 3‐diazo‐3H‐indoles where the negative charge is essentially located on the ipso C‐atom.  相似文献   

3.
A novel and efficient palladium‐catalyzed C2 arylation of N‐substituted indoles with 1‐aryltriazenes for the synthesis of 2‐arylindoles was developed. In the presence of BF3 ? OEt2 and palladium(II) acetate (Pd(OAc)2), N‐substituted indoles reacted with 1‐aryltriazenes in N,N‐dimethylacetamide (DMAC) to afford the corresponding aryl–indole‐type products in good to excellent yields.  相似文献   

4.
A series of 6‐aminoindolo[2,1‐a]isoquinoline‐5‐carbonitriles 4 have been prepared by treatment of 2‐(2‐bromophenyl)‐1H‐indoles 1 , available from 1‐(2‐bromophenyl)ethanones or 1‐(2‐bromophenyl)propan‐1‐ones by using Fischer indole synthesis, with propanedinitrile in the presence of a catalytic amount of CuBr and an excess of K2CO3 in DMSO at 100°.  相似文献   

5.
S‐((Phenylsulfonyl)difluoromethyl)thiophenium salts were designed and prepared by a triflic acid catalyzed intramolecular cyclization of ortho‐ethynyl aryldifluoromethyl sulfanes. The thiophenium salts were found to be efficient as electrophilic difluoromehtylating reagents for introduction of a CF2H group to sp3‐hybridized carbon nucleophiles such as of β‐ketoesters and dicyanoalkylidenes. The (phenylsulfonyl)difluoromethyl group can be readily transformed into CF2H under mild reaction conditions. Enantioselective electrophilic difluoromethylation was also achieved in the presence of bis(cinchona) alkaloids.  相似文献   

6.
S‐((Phenylsulfonyl)difluoromethyl)thiophenium salts were designed and prepared by a triflic acid catalyzed intramolecular cyclization of ortho‐ethynyl aryldifluoromethyl sulfanes. The thiophenium salts were found to be efficient as electrophilic difluoromehtylating reagents for introduction of a CF2H group to sp3‐hybridized carbon nucleophiles such as of β‐ketoesters and dicyanoalkylidenes. The (phenylsulfonyl)difluoromethyl group can be readily transformed into CF2H under mild reaction conditions. Enantioselective electrophilic difluoromethylation was also achieved in the presence of bis(cinchona) alkaloids.  相似文献   

7.
The diastereoselective synthesis of 6‐aroyl‐3,5‐diarylspiro[cyclohexa‐2,4‐diene‐1,2′2′,3′‐dihydro‐1′H‐benzo[e]indoles] 6 and ‐benzo[g]indoles] 7 from 2,4,6‐triarylpyrylium perchlorates 1 and in situ generated 2‐methylene‐2,3‐dihydro‐1H‐benzo[e]indoles 3 or ‐benzo[g]indoles 5 (anhydrobases of the corresponding 2‐methyl‐1H‐benzo[e]indolium perchlorates 2 and 2‐methyl‐3H‐benzo[g]indolium perchlorates 4 , respectively) in the presence of triethylamine/acetic acid in ethanol by a 2,5‐[C4+C2] pyrylium ring transformation is reported. Spectroscopic data of the transformation products and their mode of formation are discussed.  相似文献   

8.
N‐Methyl indole reacts with but‐2‐yn‐1‐ol in the presence of PtCl2 in MeOH giving indole derivatives having a substituted 3‐oxobutyl group at the 3‐position in good yield. Under the reaction conditions, various substituted indoles and substituted propargyl alcohols are successfully involved in the reaction giving the corresponding addition products in good to moderate yields. The catalytic reaction can be further extended to N‐phenyl pyrrole. In the present multi‐step reaction, PtCl2 likely plays dual roles: as the catalyst for the rearrangement of propargyl alcohols to the corresponding alkenyl ketones and as the catalyst for the addition of indoles to the alkenyl ketones. Experimental evidence is provided to support the proposed mechanism.  相似文献   

9.
A highly para‐selective CAr?H difluoromethylation of ketoxime ethers under ruthenium catalysis has been developed. A wide variety of ketoxime ethers are compatible with the reaction, which leads to the corresponding para‐difluoromethylated products in moderate to good yield. A mechanistic study clearly showed that chelation‐assisted cycloruthenation is the key factor in the para selectivity of the difluoromethylation of ketoxime ethers. Density functional theory was used to gain a theoretical understanding of the para selectivity.#  相似文献   

10.
Pyrrolo[1,2‐a]indoles are privileged structural elements of many natural products and pharmaceuticals. An efficient one‐step process for their highly diastereo‐ and enantioselective synthesis, comprising a direct [3+2]‐cycloaddition, has been developed. A chiral BINOL‐derived phosphoric acid catalyzes the reaction of in situ‐generated 2‐methide‐2H‐indoles with 2‐vinylindoles, furnishing the target products incorporating three contiguous stereogenic centers as single diastereoisomers and with excellent yields and enantioselectivities.  相似文献   

11.
The synthesis of pyrido[1,2‐a]indolium perchlorates 8,11 from 2,4,6‐triarylpyrylium perchlorates 1 and 2‐methyl‐3H‐indoles 6,9 in the presence of a basic condensing agent (anhydrous sodium acetate, piperidine acetate, triethylamine/acetic acid, triethylamine) in ethanol by a 2,4‐[C3+C2N] pyrylium ring transformation is reported. Spectroscopic data of the transformation products and their mode of formation are discussed.  相似文献   

12.
Indoles are an important structural motif that is commonly found in biologically active molecules. In this work, conditions for divergent couplings between imidamides and acceptor–acceptor diazo compounds were developed that afforded NH indoles and 3H‐indoles under ruthenium catalysis. The coupling of α‐diazoketoesters afforded NH indoles by cleavage of the C(N2)?C(acyl) bond whereas α‐diazomalonates gave 3H‐indoles by C?N bond cleavage. This reaction constitutes the first intermolecular coupling of diazo substrates with arenes by ruthenium‐catalyzed C?H activation.  相似文献   

13.
Diels–Alder reactions of 5‐methylthio‐2‐vinyl‐1H‐pyrroles with maleimides followed by isomerization gave tetrahydroindoles in moderate to good yield. Aromatization using activated MnO2 in refluxing toluene gave the corresponding 2‐methylthioindoles in good yields, and demethylthioation using Raney nickel gave the 2‐H indoles in excellent yields. The protection of the adducts produced aromatization in improved yield, demonstrating the effectiveness of the methylthio group as a protecting group for pyrroles; however, 5‐methylthio‐2‐vinylpyrrole was shown to perform with slightly less efficiency than 2‐vinylpyrrole in Diels–Alder reactions, indicating the protective group was more deactivating than desired. This route toward indoles offers high convergency and conveniently available starting materials that are easily purified. Bis‐methylthioated vinylpyrroles were shown to have potential as highly activated Diels–Alder dienes.  相似文献   

14.
Under the catalysis of only 3 mol% of Br2 at room temperature, indoles reacted rapidly with isatins to form biologically important 3,3‐bis(indole‐3‐yl)indoline‐2‐(1H)‐ones with high efficiency and wide substrate scope. Moreover, we demonstrated that p‐toluenesulfonic acid (TsOH) could serve as a surrogate to catalyze this transformation.  相似文献   

15.
A simple, mild, rapid, and highly efficient method for the conjugate addition of 1H‐indoles to electron‐deficient olefins has been developed using NaHSO4 ? SiO2 as heterogeneous catalyst. The conversion proceeds at room temperature, and the corresponding Michael adducts are formed in good‐to‐excellent yields.  相似文献   

16.
Despite a growing interest in CHF2 in medicinal chemistry, there is a lack of efficient methods for the insertion of CHF18F into druglike compounds. Herein described is a photoredox flow reaction for 18F‐difluoromethylation of N‐heteroaromatics that are widely used in medicinal chemistry. Following the two‐step synthesis for a new 18F‐difluoromethylation reagent, the photoredox reaction is completed within two minutes and proceeds by C?H activation, circumventing the need for pre‐functionalization of the substrate. The method is operationally simple and affords straightforward access to radiolabeled N‐heteroaromatics with high molar activity suitable for biological in vivo studies and clinical application.  相似文献   

17.
3‐Benzylindole‐2‐carbohydrazides (4) on reaction with triethylorthoformate in a polar solvent like DMF yielded only 10‐benzyl‐1,2‐dihydro‐1‐oxo‐1,2,4‐triazino[4,5‐a]indoles (5) while (4) on reaction with triethylorthoacetate in DMF yielded both 10‐benzyl‐4‐methyl‐1,2‐dihydro‐1‐oxo‐1,2,4‐triazino[4,5‐a]indoles (5) and 3‐benzyl‐2‐(5‐methyl‐1,3,4‐oxadiazol‐2‐yl)indoles (6) instead of only the triazinoindoles as expected. The oxadiazolylindoles (6) were also synthesized by refluxing (4) with excess of orthoesters. The structures of the compounds formed were characterized by their analytical and spectral data.  相似文献   

18.
For the first time, tetracyclic compounds, namely, furo[2′,3′:3,4]cyclohepta[1,2‐b]indoles were synthesized by recyclization of ortho‐substituted aryldifurylmethanes containing tert‐butyl groups at C5 positions of the furan rings. It was shown that [2‐(benzoylamino)phenyl]bis(5‐tert‐butyl‐2‐furyl)methanes 12 are transformed into tetracycles 15 at room temperature under treatment with POCl3 in benzene solution containing some drops of water. The reaction proceeds via the intermediate formation of 1‐benzoylamino‐3‐(5‐tert‐butyl‐2‐furyl)‐2‐(4,4‐dimethyl‐3‐oxopentyl)indoles 14 which can be isolated from the reaction mixture. The method is very simple but its application is restricted due to side reactions if electron‐releasing groups are present in 12 . On the other hand, the decrease of electron density on furan ring in the starting compounds (for example, the use of [2‐X‐phenyl]difurylmethanes (where X = tosylamino or hydroxy group) prevents cyclization under the studied reaction conditions. As a result, corresponding ketones are formed as products of recyclization. J. Heterocyclic Chem., (2011).  相似文献   

19.
In recent years, much interest has been paid to difluoromethylthiolated molecules as the “SCF2” moiety is a key motif in drug and agrochemical research. Consequently, the development of versatile strategies for the selective synthesis of SCF2H‐ and SCF2FG‐containing molecules (FG=functional group) has attracted a lot of attention and inspired the scientific community to design new tools. This Minireview highlights the major progress made in this field. Particularly, methodologies developed for the difluoromethylation of sulfur‐containing molecules and the direct construction of C?SCF2 bonds in various classes of compounds are showcased and discussed.  相似文献   

20.
The reaction of methyl 2‐(3‐chloro‐1,4‐dioxo‐1,4‐dihydronaphthalen‐2‐yl)propenoate ( 2a ) with primary amines gave 4‐chloro‐5‐hydroxy‐3‐methoxycarbonyl‐1H‐benzo[g]indoles 5a‐f as major compounds and 3‐methoxycarbonyl‐4,9‐dioxo‐2,3,4,9‐tetrahydro‐1H‐benzo[f]indoles 6a‐d as minor ones. Whereas the reaction of 3‐(3‐chloro‐1,4‐dioxo‐1,4‐dihydronaphthalen‐2‐yl)‐3‐buten‐2‐one ( 2b ) with primary amines afforded the corresponding 1H‐benzo[g]indoles 5g‐i as major products and 3‐acetyl‐4,9‐dihydro‐4,9‐dioxo‐1H‐benzo[f]indoles 7g, h as minor products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号