首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoirradiation surface molecularly imprinted polymers for the separation of 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin were synthesized using functionalized silica as a matrix, 4‐(phenyldiazenyl)phenol as a light‐sensitive monomer, and 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin as a template. Fourier transform infrared spectroscopy results indicated that 4‐(phenyldiazenyl)phenol was grafted onto the surface of functionalized silica. The obtained imprinted polymers exhibited specific recognition toward 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin. Equilibrium binding experiments showed that the photoirradiation surface molecularly imprinted polymers obtained the maximum adsorption amount of 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin at 20.5 mg/g. In binding kinetic experiments, the adsorption reached saturation within 2 h with binding capacity of 72.8%. The experimental results showed that the adsorption capacity and selectivity of imprinted polymers were effective for the separation of 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin, indicating that imprinted polymers could be used to isolate 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin from a conversion mixture containing β‐cyclodextrin and maltose. The results showed that the imprinted polymers prepared by this method were very promising for the selective separation of 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin.  相似文献   

2.
Double‐templated molecularly imprinted polymers with specific recognition of three matrine‐type alkaloids were prepared using matrine and oxymatrine as the template molecules. An approach based on double‐templated molecularly imprinted solid‐phase extraction coupled with high‐performance liquid chromatography and tandem mass spectrometry was then developed to extract and purify matrine, oxymatrine, and sophocarpine from Sophora moorcroftiana in the Tibetan plateau herbs. The polymers were characterized by Fourier‐transform infrared spectroscopy and scanning electron microscopy. Their adsorption characteristics were evaluated using adsorption kinetics, isotherms, selectivity, and recycling experiments. This polymer exhibited excellent molecular recognition ability and good selectivity. The obtained polymers as adsorbent was further used for the determination of three matrine‐type alkaloids coupled to high‐performance liquid chromatography with tandem mass spectrometry, the recoveries of three matrines spiked at three concentration levels in samples were 73.25–98.42% (n = 5) with a relative standard deviation less than 6.82%. The limits of detection for the method were 9.23–15.42 μg/kg (S/N = 3). This proposed method was assessed to be an effective method for simultaneous extraction, isolation, and identification of matrine, oxymatrine, and sophocarpine from Sophora moorcroftiana.  相似文献   

3.
Molecularly imprinted polymers were prepared via β‐cyclodextrin‐stabilized oil‐in‐water Pickering emulsion polymerization for selective recognition and adsorption of erythromycin. The synthesized molecularly imprinted polymers were spherical in shape, with diameters ranging from 20 to 40 µm. The molecularly imprinted polymers showed high adsorption capacity (87.08 mg/g) and adsorption isotherm data fitted well with Langmuir model. Adsorption kinetics study demonstrated that the molecularly imprinted polymers acted in a fast adsorption kinetic pattern and the adsorption features of molecularly imprinted polymers followed a pseudo‐first‐order model. Adsorption selectivity analysis revealed that molecularly imprinted polymers had a much better specificity for erythromycin than that for spiramycin or amoxicillin, and the relative selectivity coefficient values on the bases of spiramycin and amoxicillin were 3.97 and 3.86, respectively. The Molecularly imprinted polymers also showed a satisfactory reusability after four times of regeneration. In addition, molecularly imprinted polymers exhibited good adsorption capacities for erythromycin under complicated environment, that is, river water and milk. These results proved that the as‐prepared molecularly imprinted polymers is a potent absorbent for selective recognition of erythromycin, and therefore it may be a promising candidate for practical applications, such as wastewater treatment and detection of erythromycin residues in food.  相似文献   

4.
Surface enrofloxacin‐imprinted magnetic nanoparticles were prepared for the selective recognition and fast separation of fluoroquinolones in human serum by surface‐initiated reversible addition fragmentation chain transfer polymerization. The surface morphology and imprinted behavior were investigated and optimized. The living/controlled nature of reversible addition‐fragmentation chain transfer polymerization reaction allowed the successful construction of well‐defined imprinted polymer layer outside the Fe3O4 core. Such molecularly imprinted polymers exhibited superparamagnetic properties and specific recognition toward fluoroquinolones. Combined with reversed‐phase high‐performance liquid chromatography, the prepared molecularly imprinted polymers were used for the selective enrichment and analysis of fluoroquinolones in human serum samples. The recoveries of four fluoroquinolones were 86.8–95.3% with relative standard deviations of 2.0–6.8% (n  = 3). Such magnetic molecularly imprinted polymers have great prospects in the separation and enrichment of trace analysts in complex biological samples.  相似文献   

5.
A novel type of magnetic molecularly imprinted polymer was prepared for the selective enrichment and isolation of chelerythrine from Macleaya cordata (Willd) R. Br. The magnetic molecularly imprinted polymers were prepared using functional Fe3O4@SiO2 as a magnetic support, chelerythrine as template, methacrylic acid as functional monomer, and ethylene glycol dimethacrylate as cross‐linker. Density functional theory at the B3LYP/6‐31G (d, p) level with Gaussian 09 software was applied to calculate the interaction energies of chelerythrine, methacrylic acid and the complexes formed from chelerythrine and methacrylic acid in different ratios. The structural features and morphology of the synthesized polymers were characterized by using Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, and vibration sample magnetometry. Adsorption experiments revealed that the magnetic molecularly imprinted polymers possessed rapid kinetics, high selectivity, and a higher binding capacity (7.96 mg/g) to chelerythrine than magnetic molecularly non‐imprinted polymers (2.36 mg/g). The adsorption process was in good agreement with the Langmuir adsorption isotherm and pseudo‐second‐order kinetics models. Furthermore, the magnetic molecularly imprinted polymers were successfully employed as adsorbents for the extraction and enrichment of chelerythrine from Macleaya cordata (Willd) R. Br. The results indicated that the magnetic molecularly imprinted polymers were suitable for the selective adsorption of chelerythrine from complex samples such as natural medical plants.  相似文献   

6.
By using density functional theory, we studied the interaction process between barbital and 2‐vinyl‐4,6‐diamino‐1,3,5‐triazine in acetonitrile at 333 K. Barbital and 2‐vinyl‐4,6‐diamino‐1,3,5‐triazine were used as the template and functional monomer, respectively. The molecularly imprinted polymer microspheres containing barbital and 2‐vinyl‐4,6‐diamino‐1,3,5‐triazine were synthesized through precipitation polymerization. After removing the template molecule barbital, the average diameter of the obtained molecularly imprinted polymers was 1.45 μm. By optimizing the molar ratio of barbital and the 2‐vinyl‐4,6‐diamino‐1,3,5‐triazine, the resulting molecularly imprinted polymers showed the highest adsorption for the barbital. The analysis of the Scatchard plot revealed that the dissociation constant (Kd) and apparent maximum adsorption quantity (Qmax) of the molecularly imprinted polymers were 30.69 mg/L and 8.68 mg/g, respectively. The study of selective adsorption showed that molecularly imprinted polymers exhibited higher selectivity for barbtital than that for 1,3‐dimethyl barbituric acid and pentobarbital. Herein, the studies can provide theoretical and experimental references for the barbital‐imprinted system.  相似文献   

7.
Thermo‐responsive magnetic molecularly imprinted polymers were prepared by simple surface molecular imprinting polymerization for the selective adsorption and enrichment of formononetin from Trifolium pretense by temperature regulation. Using formononetin as a template, N‐isopropylacrylamide as the thermo‐responsive functional monomer, and methacrylic acid as an assisting functional monomer, the polymers were synthesized on the surface of the magnetic substrate. The results show that imprinted polymers attained controlled adsorption of formononetin in response to the temperature change, with large adsorption capacity (16.43 mg/g), fast kinetics (60 min) and good selectivity at 35°C compared with that at 25 and 45°C. The selectivity experiment indicated that the materials had excellent recognition ability for formononetin and the selectivity factors were between 1.32 and 2.98 towards genistein and daidzein. The excellent linearity was attained in the range of 5–100 μg/mL, with low detection limits and low quantitation limits of 0.017 and 0.063 μg/mL, respectively. Furthermore, the thermo‐responsive magnetic molecularly imprinted polymers were successfully utilized for enriching and purifying formononetin from Trifolium pretense. The analytical results indicate that the imprinted polymers are promising materials for selective identification and enrichment of formononetin in complicated herbal medicines by simple temperature‐responsive regulation.  相似文献   

8.
Molecularly imprinted polymers were prepared using the molecular structure analogs of sanshool as template molecule, 2‐vinylpyridine and β‐cyclodextrin as double functional monomers, ethylene dimethacrylate as cross linker, and azobisisobutyronitrile as initiator. The structural characteristics of the polymers were determined by Fourier‐transform infrared spectroscopy and scanning electron microscopy. Dynamic adsorption and isothermal adsorption were also investigated. The molecularly imprinted polymers were used to prepare a molecularly imprinted solid‐phase extraction column in order to separate acid amide components from pepper oil resin derived from Chinese prickly ash (Zanthoxylum bungeanum). After eluting, the percentage of acid amide components was enhanced to 92.40 ± 1.41% compared with 23.34 ± 1.21% in the initial pepper oil resin, indicating good properties of purification of molecularly imprinted polymers and potential industrial application.  相似文献   

9.
A novel molecularly imprinted polymer based on graphene oxide was prepared as a solid‐phase extraction adsorbent for the selective adsorption and extraction of cyromazine from seawater samples. The obtained graphene oxide molecularly imprinted polymer and non‐imprinted polymer were nanoparticles and characterized by scanning electron microscopy. The imprinted polymer showed higher adsorption capacity and better selectivity than non‐imprinted polymer, and the maximum adsorption capacity was 14.5 mg/g. The optimal washing and elution solvents for molecularly imprinted solid phase extraction procedure were 2 mL of acetonitrile/water (80:20, v/v) and methanol/acetic acid (70:30, v/v), respectively. The recoveries of cyromazine in the spiked seawater samples were in the range of 90.3–104.1%, and the relative standard deviation was <5% (n = 3) under the optimal procedure and detection conditions. The limit of detection of the proposed method was 0.7 μg/L, and the limit of quantitation was 2.3 μg/L. Moreover, the imprinted polymer could keep high adsorption capacity for cyromazine after being reused six times at least. Finally, the synthesized graphene oxide molecularly imprinted polymer was successfully used as a satisfied sorbent for high selectivity separation and detection of cyromazine from seawater coupled with high‐performance liquid chromatography.  相似文献   

10.
Magnetic molecularly imprinted polymer nanoparticles for di‐(2‐ethylhexyl) phthalate were synthesized by surface imprinting technology with a sol–gel process and used for the selective and rapid adsorption and removal of di‐(2‐ethylhexyl) phthalate from aqueous solution. The prepared magnetic molecularly imprinted polymer nanoparticles were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and vibrating sample magnetometry. The adsorption of di‐(2‐ethylhexyl) phthalate onto the magnetic molecularly imprinted polymer was spontaneous and endothermic. The adsorption equilibrium was achieved within 1 h, the maximum adsorption capacity was 30.7 mg/g, and the adsorption process could be well described by Langmuir isotherm model and pseudo‐second‐order kinetic model. The magnetic molecularly imprinted polymer displayed a good adsorption selectivity for di‐(2‐ethylhexyl) phthalate with respect to dibutyl phthalate and di‐n‐octyl phthalate. The reusability of magnetic molecularly imprinted polymer was demonstrated for at least eight repeated cycles without significant loss in adsorption capacity. The adsorption efficiencies of the magnetic molecularly imprinted polymer toward di‐(2‐ethylhexyl) phthalate in real water samples were in the range of 98–100%. These results indicated that the prepared adsorbent could be used as an efficient and cost‐effective material for the removal of di‐(2‐ethylhexyl) phthalate from environmental water samples.  相似文献   

11.
Molecularly imprinted polymers for strobilurin fungicides were prepared by precipitation polymerization employing azoxystrobin as template molecular together with methacrylic acid monomer and trimethylolpropane triacrylate cross‐linker. Morphological characterization showed molecularly imprinted polymers were uniform spherical particles with about 0.2 μm in diameter, while the morphologies of nonimprinted polymers were irregular bulk. The equilibrium binding and selective experiments proved that molecularly imprinted polymers possessed a higher affinity toward four fungicides compared to nonimprinted polymers and heterogeneous binding sites were found in the molecularly imprinted polymers. Molecularly imprinted solid‐phase extraction conditions, including sample loading solvents, selective washing, and elution solvents, were carefully optimized. The developed method showed good recoveries (70.0–114.0%) with relative standard deviations in range of 1.0–9.8% (n  =  3) for samples (cucumber and peach) spiked at three different levels (10, 50, and 100 μg/ kg). The detection limit (signal/noise = 3) ranged from 0.01 to 0.08 μg/kg. The results demonstrated good potential use of this convenient and highly efficient method for determining trace strobilurin fungicides in agricultural products.  相似文献   

12.
This research highlights the application of highly efficient molecularly imprinted solid‐phase extraction for the preconcentration and analysis of melamine in aquaculture feed samples. Melamine‐imprinted polymers were synthesized employing methacrylic acid and ethylene glycol dimethacrylate as functional monomer and cross‐linker, respectively. The characteristics of obtained polymers were evaluated by scanning electron microscopy, Fourier transform infrared spectroscopy and binding experiments. The imprinted polymers showed an excellent adsorption ability for melamine and were applied as special solid‐phase extraction sorbents for the selective cleanup of melamine. An off‐line molecularly imprinted solid‐phase extraction procedure was developed for the separation and enrichment of melamine from aquaculture feed samples prior to high‐performance liquid chromatography analysis. Optimum molecularly imprinted solid‐phase extraction conditions led to recoveries of the target in spiked feed samples in the range 84.6–96.6% and the relative standard deviation less than 3.38% (n = 3). The aquaculture feed sample was determined, and there was no melamine found. The results showed that the molecularly imprinted solid‐phase extraction protocols permitted the sensitive, uncomplicated and inexpensive separation and pre‐treatment of melamine in aquaculture feed samples.  相似文献   

13.
Novel thermosensitive molecularly imprinted polymers were successfully prepared using the epitope imprinting approach in the presence of the mimic template phenylphosphonic acid, the functional monomer vinylphosphonic acid‐Ti4+, the temperature‐sensitive monomer N‐isopropylacrylamide and the crosslinker N,N′‐methylenebisacrylamide. The ratio of the template/thermosensitive monomers/crosslinker was optimized, and when the ratio was 2:2:1, the prepared thermosensitive molecularly imprinted polymers had the highest imprinting factor. The synthetic thermosensitive molecularly imprinted polymers were characterized by Fourier transform infrared spectroscopy to reveal the combination and elution processes of the template. Then, the adsorption capacity and thermosensitivity was measured. When the temperature was 28°C, the imprinting factor was the highest. The selectivity and adsorption capacity of the thermosensitive molecularly imprinted polymers for phosphotyrosine peptides from a mixture of three tailor‐made peptides were measured by high‐performance liquid chromatography. The results showed that the thermosensitive molecularly imprinted polymers have good selectivity for phosphotyrosine peptides. Finally, the imprinted hydrogels were applied to specifically adsorb phosphotyrosine peptides from a sample mixture containing phosphotyrosine and a tryptic digest of β‐casein, which demonstrated high selectivity. After four rebinding cycles, 78.9% adsorption efficiency was still retained.  相似文献   

14.
The dummy molecularly imprinted polymers were prepared by Pickering emulsion polymerization. 4,4′‐(1‐Phenylethylidene) bisphenol was selected as the dummy template to avoid the leakage of the target bisphenols. The microsphere particles were characterized by scanning electron microscopy and nitrogen adsorption–desorption measurements, demonstrating that the regular‐shaped and medium‐sized particles (40–70 μm) were obtained with a specific surface area of 355.759 m2/g and a total pore volume of 0.561 cm3/g. The molecular imprinting properties of the particles were evaluated by static adsorption and chromatographic evaluation experiments. The association constant and maximum adsorption amount of bisphenol A were 0.115 mmol/L and 3.327 μmol/g using Scatchard analysis. The microsphere particles were then used as a solid‐phase extraction sorbent for selective extraction of seven bisphenols. The method of dummy molecularly imprinted solid‐phase extraction coupled with high‐performance liquid chromatography and diode array detection was successfully established for the extraction and determination of seven bisphenols from environmental sediment samples with method detection limits of 0.6–1.1 ng/g. Good recoveries (75.5–105.2%) for sediment samples at two spiking levels (500 and 250 ng/g) and reproducibility (RSDs < 7.7%, n = 3) were obtained.  相似文献   

15.
Molecularly imprinted polymers were synthesized using mixed tea saponins as a template and acrylamide‐β‐cyclodextrin as a cofunctional monomer for the specific binding and purification of tea saponins from the defatted cake extract of Camellia oleifera. The adsorption properties of the prepared polymers were systematically evaluated including adsorption kinetics, adsorption isotherms, and selective recognition characteristics. It showed that the adsorption kinetics followed the pseudo first‐order kinetic model (R2 = 0.995) with an equilibrium time of 3 h, adsorption isotherm data fitted well with the Langmuir–Freundlich model (R2 = 0.984) with an adsorption capacity of 14.23 mg/g. The relative selectivity coefficient (k´) in the presence of the analogues glycyrrhizic acid and glycyrrhetinic acid were 1.16 and 17.21, respectively. The performance of the molecularly imprinted polymers as solid‐phase extraction materials was investigated and the results indicated that using acrylamide‐β‐cyclodextrin as a cofunctional monomer improved both the adsorption capacity and active sites stability of the imprinted polymers. The solid‐phase extraction using the polymers as packing materials was subsequently applied for the separation of tea saponins in raw C. oleifera press extract, and targets were obtained with a purity reaching 89%.  相似文献   

16.
In this work, dummy molecularly imprinted polymers with high selectivity and affinity to capsaicin and dihydrocapsaicin are designed using N‐vanillylnonanamide as a dummy template. The performance of dummy molecularly imprinted polymers and nonimprinted polymers was evaluated using adsorption isotherms, adsorption kinetics, and selective recognition capacity. Dummy molecularly imprinted polymers were found to exhibit good site accessibility, taking just 20 min to achieve adsorption equilibrium; they were also highly selective toward capsaicin and dihydrocapsaicin. We successfully used dummy molecularly imprinted polymers as a specific sorbent for selectively enriching capsaicin and dihydrocapsaicin from chili pepper samples. In a scaled‐up experiment, the selective recovery of capsaicinoids was calculated to be 77.8% using solid‐phase extraction. To the best of our knowledge, this is the first example of the use of N‐vanillylnonanamide as a dummy template in molecularly imprinted polymers to simultaneously enrich capsaicin and dihydrocapsaicin.  相似文献   

17.
The aim of this work was to develop an efficient method for the selective extraction and analysis of fenoxycarb, a carbamate pesticide, in mussel samples using a molecularly imprinted solid‐phase extraction device. The optimization of molecularly imprinted polymer synthesis was performed using the experimental design under the response surface methodology approach. A fast rebinding study and Freundlich isotherm adsorption were carried out to calculate binding capacity B, site number n, and affinity constant Kf. The optimum molecularly imprinted polymer was successfully used as sorbent of a solid‐phase extraction cartridge for the determination of fenoxycarb in real mussel samples. The range of linearity was 0.3–30 mg/L with a correlation coefficient of 0.991. The limit of detection was 0.247 mg/kg. The recovery of fenoxycarb extracted from mussel samples of Mediterranean sea was 97% (n = 3) with relative standard deviation between 6 and 7% proving the reliability of the developed method.  相似文献   

18.
In this work, a novel surface molecularly imprinted polymer with high adsorption capacity, high adsorption rate, and high selectivity for fluoroquinolones was prepared on the surface of UiO‐66‐NH2, which is a kind of metal‐organic framework. The surface morphology and adsorption properties of this molecularly imprinted polymer were investigated. The maximum adsorption capacity was 99.19 mg/g, and adsorption equilibrium was achieved within 65 s. Combined with reversed‐phase high‐performance liquid chromatography, the molecularly imprinted polymer was used to selectively enrich, separate and analyze fluoroquinolones present in lake water. The results showed that the recoveries of the four fluoroquinolones were 92.6–100.5%, and the relative standard deviations were 2.9–6.4% (n = 3). The novel molecularly imprinted polymer is an excellent adsorbent and has broad application prospects in the enrichment and separation of trace analytes in complex samples.  相似文献   

19.
Surface molecularly imprinted polymers were successfully prepared by a novel two‐step precipitation polymerization method. The first‐step allowed the formation of 4‐vinylpyridine divinylbenzene and trimethylolpropane trimethacrylate copolymeric microspheres. In the second‐step precipitation polymerization, microspheres were modified with a molecularly imprinting layer of oleanolic acid as template, methacrylic acid as functional monomer, and divinylbenzene/ethylene glycol dimethacrylate as cross‐linker. The obtained polymers had an average diameter of 4.43 μm and a polydispersity index of 1.011; adsorption equilibrium was achieved within 40 min, with adsorption capacity reaching 27.4 mg/g. Subsequently, the polymers were successfully applied as the adsorbents of molecularly imprinted solid‐phase extraction to separate and purify the oleanolic acid from grape pomace. The content of oleanolic acid in the grape pomace extract was enhanced from 13.4 to 93.2% after using the molecularly imprinted solid‐phase extraction process. This work provides an efficient way for effective oleanolic acid separation and enrichment from complex matrices, which is especially valuable in industrial production.  相似文献   

20.
Considering the importance of developing a new analytical approach for pesticide residue detection for the sake of ensuring food safety, a β‐cyclodextrin based molecularly imprinted polymer was prepared for selective determination of carbendazim. The polymers consist of a porous and hollow structure demonstrating the selective abundant adsorption sites for carbendazim molecule. The selectivity and adsorption capacity of the imprinted polymers were analyzed with dispersive solid‐phase extraction and analyzed with high performance liquid chromatography coupled with ultraviolet. The results of imprinted polymers were higher than non‐imprinted polymers with the maximum adsorption capacity of 3.65 mg/g within 30 min of total adsorption time. The reusability of the imprinted polymers was determined to evaluate its effectiveness and stability, which proved that the polymers lost 10% efficiency within seven consecutive recycles. The developed method displayed good linearity over the concentration range of 0.05–2.0 mg/L. The recovery percentage of 81.33–97.23 with relative standard deviations of 1.49–4.66% was obtained from spiked apple, banana, orange, and peach samples with a limit of detection of 0.03 mg/L and a limit of quantification of 0.10 mg/L (signal to noise ratio = 3/10). The overall performance of the proposed method evident that this technique provided a desirable outcome and it can be used as a convenient approach, as it qualifies the analytical standards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号