首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electrophoresis》2017,38(9-10):1292-1300
The present work deals with the development and validation of a novel dual CD‐MEKC system for the systematic flavonoid fingerprinting of Ligaria cuneifolia (R. et P.) Tiegh.—Loranthaceae—extracts. The BGE consisted of 20 mM pH 8.3 borate buffer, 50 mM SDS, a dual CD system based on the combination of 5 mM β‐CD and 2% w/v S‐β‐CD, and 10% v/v methanol. The proposed method has been successfully applied to the comparative analysis of extracts from aerial parts and different hosts, geographical areas, and extraction procedures in order to establish the flavonoid fingerprint of L. cuneifolia . The method was validated according to international guidelines. LOD and LOQ, intra and interday precision, and linearity were determined for catechin, epicatechin, procyanidin B2, rutin, quercetin‐3‐O‐glucoside, quercetin‐3‐O‐xyloside, quercetin‐3‐O‐rhamnoside, quercetin‐3‐O‐arabinofuranoside, quercetin‐3‐O‐arabinopyranoside, and quercetin. The CD‐MEKC methodology emerges as a suitable alternative to the traditional HPLC for quality control, fingerprinting, and standardization of L. cuneifolia extracts from different sources.  相似文献   

2.
Different kinds of deep eutectic solvents based on choline chloride and ionic liquids based on 1‐methylimidazole were used to modify hybrid molecularly imprinted polymers with the monomer γ‐aminopropyltriethoxysilane‐methacrylic and three templates (rutin, scoparone, and quercetin). The materials were adopted as solid‐phase extraction packing agents, and were characterized by FTIR spectroscopy and field emission scanning electron microscopy. The hybrid molecularly imprinted polymers modified by deep eutectic solvents had high recoveries and a strong recognition of rutin, scoparone, and quercetin in Herba Artemisiae Scopariae than those modified by ionic liquids. In the procedure of solid‐phase extraction, deep eutectic solvents‐2‐hybrid molecularly imprinted polymers were obtained with the best recoveries with rutin (92.27%), scoparone (87.51%), and quercetin (80.02%), and the actual extraction yields of rutin (5.6 mg/g), scoparone (2.3 mg/g), and quercetin (3.4 mg/g). Overall, the proposed approach with the high affinity of hybrid molecularly imprinted polymers might offer a novel method for the purification of complex samples.  相似文献   

3.
Extraction and determination of three flavonoids (morin, quercetin, and kaempferol) were performed by dispersive magnetic solid phase extraction based on mixed hemi/ad‐micelles and high‐performance liquid chromatography with UV detection. The Fe3O4/SiO2 nanoparticles were synthesized and characterized by X‐ray diffraction, FTIR, scanning electron microscopy, and thermogravimetric analysis. Fe3O4/SiO2 nanoparticles coated with mixed hemi/ad‐micelles cetyltrimethyl ammonium bromide was applied as a sorbent and used for extraction of flavonoids. Effective parameters on the extraction recovery such as amount of magnetic nano particles, volume of cetyltrimethyl ammonium bromide solution with specific concentration, pH of sample solution, adsorption equilibrium time, volume of desorption solvent, and desorption times were evaluated and optimized using fractional factorial design and central composite design. Under the optimum condition limit of detection and linearity were 0.83, 2.7–500.0 for morin, 0.18, 0.7–500.0 for quercetin and, 0.37, 1.3–500.0 µg/L for kaempferol. The extraction recovery with relative standard deviation were 97.88, 1.94 for morin, 95.77, 0.80 for quercetin, and 93.35, 1.45 for kaempferol. The proposed method was applied for simultaneous extraction and determination of flavonoids in several fruit juices and vegetable samples.  相似文献   

4.
A method for PEG‐based microwave‐assisted extraction (MAE) of flavonoid compounds from persimmon leaves has been successfully developed. The extraction efficiency of total flavonoid content was evaluated by the chromatographic peak areas of quercetin and kaempferol, which are two bioactive components typically found in persimmon leaves. The best combination of extraction parameters was obtained with response surface methodology. A microwave power of 525 W, liquid to solid ratio of 17:1 mL/g, and PEG aqueous solution concentration of 60% w/w were identified as the optimum parameters. Extraction dynamics analysis indicated that the quercetin, kaempferol, and total flavonoid contents were rising with increasing extraction time up to 20–25 min, from which point onwards they all decreased. Under the optimum conditions, quercetin, kaempferol, and total flavonoid contents obtained from the sample were 1.20 ± 0.05, 0.64 ± 0.11, and 16.90 ± 0.06 mg/g, respectively. Compared with ethanol‐based MAE, and ethanol‐based and PEG‐based ultrasonic‐assisted extractions, PEG‐based MAE had higher efficiency for the extraction of flavonoid compounds from persimmon leaves. Overall, PEG‐based MAE represents an efficient choice for the extraction of bioactive substances from traditional Chinese medicines.  相似文献   

5.
A new type of adsorbent composed of magnetic three‐dimensional graphene coated with silver nanoparticles was synthesized by an electroless technique and used in the magnetic solid‐phase extraction of selected pesticides (fenitrothion, chlorpyrifos, and hexaconazole) before gas chromatography with a micro‐electron capture detector. The adsorbent was characterized using Fourier‐transform infrared spectroscopy, X‐ray diffraction, vibrating sample magnetometry, and field‐emission scanning electron microscopy. The important extraction parameters such as pH, adsorbent dose, extraction time, and desorption conditions were investigated. Under the optimal conditions, the analytical figures of merit were obtained as: linear dynamic range of 0.1–5 ng/g with determination coefficients of 0.991–0.996; limit of detection of 0.07–0.13 ng/g; limit of quantification of 0.242–0.448 ng/g; and the intraday and interday relative standard deviations (= 5 ng/g, = 3) were 3.8–8.7 and 6.6–8.9%, respectively. The developed method was successfully applied for analysis of the selected pesticides in tomato and grape with extraction recoveries in the range of 72.8–109.6%.  相似文献   

6.
Tao Zhu  Wentao Bi  Kyungho Row 《中国化学》2011,29(8):1759-1763
A short ionic liquids (ILs)‐based monolithic cartridge was prepared and used as the selective extraction sorbent. After the material was evaluated by field emission‐scanning electron microscopy (FE‐SEM), a new approach for the extraction and determination of quercetin and myricetin from Chamaecyparis obtusa (C. obtusa) by using ILs‐based, monolithic cartridge system was developed. Chromatographic analysis was conducted on a C18 column with UV detection at 372 nm, an eluting solution consisting of acetonitrile‐water (25/75,V/V) as the mobile phase, and a flow rate of 0.7 mL·min−1. A good linear relationship was demonstrated when the concentrations of quercetin and myricetin were in the range of 0.5–100.0 µg·mL−1. The recoveries ranged from 101.6% to 104.6% and the inter‐ and intra‐day relative standard deviations (RSD) were less than 5.0%. This method effectively removed the impurities and avoided tedious pretreatment. It provided a fast, economic and effective method for assaying trace drugs from natural plants.  相似文献   

7.
A simple and reliable method for determination of quercetin glycosides and free quercetin in buckwheat flower, leaves, stems and achenes was developed. The method consists of flavonoid extraction from freeze‐dried homogenous material in 50% v/v methanol solution and in presence of an antioxidant, cleaning of extract and analyte isolation using SPE. Analytical step uses capillary micellar electrokinetic chromatography. The working ranges, LOD and LOQ, recovery, precision and measurement uncertainty were calculated. The method is suitable for samples from buckwheat. The highest content of rutin was found in flowers of both kinds of buckwheat (99 400 mg/kg in F. esculentum, 108 000 mg/kg in F. tataricum). The free quercetin occurs in flowers and achenes of F. esculentum, whereas flowers and achenes of F. tataricum contained quercitrin.  相似文献   

8.
A new method for the selective extraction of p‐aminosalicylic acid from aqueous and urine samples has been developed using magnetic molecularly imprinted polymer nanoparticles before determination by high‐performance liquid chromatography. The Fe3O4 nanoparticles were first prepared through the chemical coprecipitation of Fe2+ and Fe3+ and then coated with a vinyl shell. Subsequently, a layer of molecularly imprinted polymers was grafted onto the vinyl‐modified magnetic nanoparticles by precipitation polymerization. FTIR spectroscopy, scanning electron microscopy, vibrating sample magnetometry, and thermogravimetric analysis were applied to characterize the sorbent properties. Moreover, the predominant parameters affecting the magnetic solid phase extraction such as sample pH, sorption and elution times, the amount of sorbent, and composition and volume of eluent were investigated thoroughly. The maximum sorption capacity of the imprinted polymer toward p‐aminosalicylic acid was 70.9 mg/g, which is 4.5 times higher than that of the magnetic nonimprinted polymer. The magnetic molecularly imprinted polymer nanoparticles were applied for the selective extraction of p‐aminosalicylic acid from aqueous and urine samples and satisfactory results were achieved. The results illustrate that magnetic molecularly imprinted polymer nanoparticles have a great potential in the extraction of p‐aminosalicylic acid from environmental and biological matrices.  相似文献   

9.
Flavonoids are the main active components in Psidium guajava leaves and have many multi‐physiological functions. In this study, the flavonoid compositions were identified in the Psidium guajava leaves samples using a high‐performance liquid chromatography with time‐of‐flight electrospray ionization mass spectrometry method. A high‐performance liquid chromatography fingerprint method, combined with chemometrics, was used to perform a quality assessment of the Psidium guajava leaves samples. The eight identified flavonoid compounds including rutin, isoquercitrin, quercetin‐3‐O‐β‐d ‐xylopyranoside, quercetin‐3‐O‐α‐l ‐arabinopyranoside, avicularin, quercitrin, quercetin, and kaempferol were used as the chemical markers. The antioxidant activity of 15 batches of samples was examined using three different methods, and the results revealed the Psidium guajava leaves samples that had higher contents of the flavonoid compounds, glycoside and aglycone, possessed the highest antioxidant capacities. Consequently, a combination of chromatographic fingerprints and chemometric analyses was used for a quality assessment of Psidium guajava leaf tea and its derived products, which can lay the foundation for the development of plant tea resources or other herbs.  相似文献   

10.
This study describes the synthesis and application of a magnetic amino‐functionalized hollow silica‐titania microsphere as a new sorbent for magnetic dispersive micro‐solid phase extraction of selected pesticides in coffee bean samples. The sorbent was fully characterized by Fourier‐transform infrared spectroscopy, field emission scanning electron microscopy, transition electron microscopy, energy‐dispersive X‐ray spectroscopy, and vibrating sample magnetometry techniques. Significant extraction parameters affecting the proposed method, such as extraction time, sorbent amount, sample solution pH, salt amount, and desorption conditions (desorption solvent and time) were investigated and optimized. All the figures of merits were validated in coffee bean samples under the matrix‐matched calibration method. Linear dynamic ranges were 5–250 µg/kg with the determination coefficients (R2) > 0.9980. The limits of detection for the pesticides of chlorpyrifos, malathion, hexaconazole, and atrazine were 1.42, 1.43, 1.35, and 1.33 µg/kg, respectively. Finally, the method was successfully applied for the determination of the pesticides in green and roasted coffee bean samples, and the obtained recoveries were in the range of 74–113% for spiked samples. The prepared sorbent could be used for the magnetic dispersive micro‐solid phase extraction of pesticides in the plant‐derived food matrix.  相似文献   

11.
A new three‐dimensional graphene oxide‐wrapped melamine foam was prepared and used as a solid‐phase extraction substrate. β‐Cyclodextrin was fabricated onto the surface of three‐dimensional graphene oxide‐wrapped melamine foam by a chemical covalent interaction. In view of a specific surface area and a large delocalized π electron system of graphene oxide, in combination with a hydrophobic interior cavity and a hydrophilic peripheral face of β‐cyclodextrin, the prepared extraction material was proposed for the determination of flavonoids. In order to demonstrate the extraction properties of the as‐prepared material, the adsorption energies were theoretically calculated based on periodic density functional theory. Static‐state and dynamic‐state binding experiments were also investigated, which revealed the monolayer coverage of flavonoids onto the β‐cyclodextrin/graphene oxide‐wrapped melamine foams through the chemical adsorption. 1H NMR spectroscopy indicated the formation of flavonoids–β‐cyclodextrin inclusion complexes. Under the optimum conditions, the proposed method exhibited acceptable linear ranges (2–200 μg/L for rutin and quercetin‐3‐O‐rhamnoside; 5–200 μg/L for quercetin) with correlation coefficients ranging from 0.9979 to 0.9994. The batch‐to‐batch reproducibility (= 5) was 3.5–6.8%. Finally, the as‐established method was satisfactorily applied for the determination of flavonoids in Lycium barbarum (Goji) samples with relative recoveries in the range of 77.9–102.6%.  相似文献   

12.
The fabrication of novel poly(ionic liquids)‐modified polystyrene (PSt) magnetic nanospheres (PILs‐PMNPs) by a one‐pot miniemulsion copolymerization reaction was achieved through an efficient microwave‐assisted synthesis method. The morphology, structure, and magnetic behavior of the as‐prepared magnetic materials were characterized by using transmission electron microscopy, vibrating sample magnetometry, etc. The magnetic materials were utilized as sorbents for the extraction of phthalate esters (PAEs) from beverage samples followed by high‐performance ultrafast liquid chromatography analysis. Significant extraction parameters that could affect the extraction efficiencies were investigated particularly. Under optimum conditions, good linearity was obtained in the concentration range of 0.5–50 (dimethyl phthalate), 0.3–50 (diethyl phthalate), 0.2–50 (butyl benzyl phthalate), and 0.4–50 μg/L (di‐n‐butyl phthalate), with correlation coefficients R 2 > 0.9989. Limits of detection were in the range 125–350 pg. The proposed method was successfully applied to determine PAEs from beverage samples with satisfactory recovery ranging from 77.8 to 102.1% and relative standard deviations ranging from 3.7 to 8.4%. Comparisons of extraction efficiency with PSt‐modified MNPs as sorbents were performed. The results demonstrated that PILs‐PMNPs possessed an excellent adsorption capability toward the trace PAE analytes.  相似文献   

13.
An offline preparative two‐dimensional reversed‐phase liquid chromatography/hydrophilic interaction liquid chromatography coupled with hydrophilic interaction solid‐phase extraction method was developed for the preparative isolation of flavonoid glycosides from a crude sample of Sphaerophysa salsula . First, the non‐flavonoids were removed using an XAmide solid‐phase extraction cartridge. Based on the separation results of three different chromatographic stationary phases, the first‐dimensional preparation was performed on an XAqua C18 prep column, and 15 fractions were obtained from the 5.2 g target sample. Then, three representative fractions were selected for additional purification on an XAmide preparative column to further isolate the flavonoid glycosides. In all, eight flavonoid glycosides were isolated in purities over 97%. The results demonstrated that the two‐dimensional liquid chromatography method used in this study was effective for the preparative separation of flavonoid glycosides from Sphaerophysa salsula . Additionally, this method showed great potential for the separation of flavonoid glycosides from other plant materials.  相似文献   

14.
In this study, porous sandwich structure Fe3O4 nanoparticles coated by polyhedral oligomeric silsesquioxanes and β‐cyclodextrin were prepared by surface polymerization and were used as the magnetic solid phase extraction adsorbent for the extraction and determination of carbaryl and carbofuran. The Fe3O4 nanoparticles coated with polyhedral oligomeric silsesquioxanes and β‐cyclodextrin were characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, thermogravimetric analysis, vibrating sample magnetometry, and scanning electron microscopy. After optimizing the extraction conditions, a method that combined magnetic solid phase extraction with high‐performance liquid chromatography was developed for the determination of carbaryl and carbofuran in apple. The method exhibited a good linearity in the range of 2–400 μg/kg for carbaryl and carbofuran (R= 0.9995), respectively. The limits of detection were 0.5 μg/kg of carbaryl and 0.7 μg/kg for carbofuran in apple, respectively. Extraction recoveries ranged from 94.2 to 103.1% with the preconcentration factor of 300 and the relative standard deviations were less than 5.9%. These results indicated that the method combined magnetic solid phase extraction with high‐performance liquid chromatography and was promising for the determination of carbaryl and carbofuran at trace amounts.  相似文献   

15.
Sceptridium ternatum is a medicinal herb with multiple health benefits. However, its antioxidant activity and active components have not been clarified. In this study, the antioxidant capacity of S. ternatum was comprehensively investigated using multiple colorimetric methods and 1,1‐diphenyl‐2‐picrylhydrazyl–high‐performance liquid chromatography analysis. First, the phenolic content, flavonoid content, and radical scavenging ability of S. ternatum were parallelly determined using colorimetric methods performed in 96‐well microplates. The flavonoid content, rather than the phenolic content, was highly correlated with its antioxidant activity. Sceptridium ternatum was shown to be a rich source of flavonoids, with a highest flavonoid yield of 3.44 ± 0.11 mg/g. Subsequently, 1,1‐diphenyl‐2‐picrylhydrazyl–high‐performance liquid chromatography experiment and quadrupole time‐of‐flight mass spectrometry analyses were carried out for rapid screening of the individual antioxidants. A total of 14 O‐glycosyl flavonoids with quercetin or kaempferol aglycone have been characterized. Particularly, quercetin 3‐O‐rhamnoside‐7‐O‐glucoside exhibited the most potent antioxidant ability. Its half‐maximal effective concentrations for scavenging 1,1‐diphenyl‐2‐picrylhydrazyl and 2,2?‐azino‐bis (3‐ethylbenzthiazoline‐6‐sulfonic acid) radicals were 70.55 ± 2.69 and 106.90 ± 1.76 µg/mL, respectively, which were comparable with those of l ‐ascorbic acid. Our results indicated that the combined colorimetric and chromatographic methods provided a practical strategy for the discovery of bioactive compounds from natural products.  相似文献   

16.
Magnetic polyimide poly(4,4′‐oxydiphenylene‐pyromellitimide) nanoparticles were successfully synthesized and developed for the solid‐phase extraction of polycyclic aromatic hydrocarbons in seawater samples. The aromatic rings of polyimide coating provided a good adsorption capacity (28.3–42.5 mg/g) for polycyclic aromatic hydrocarbons because of the π–π stacking interaction. The developed method was used as a simple, fast, and efficient extraction and preconcentration technique for the trace analysis of polycyclic aromatic hydrocarbons. The high chemical, physical and thermal stability, excellent reusability, and good magnetic properties are the merits of the sorbent. High preconcentration factors (41–63) were obtained. The sorbent was also characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X‐ray spectrometry, transmission electron microscopy, and vibrating sample magnetometry. After optimizing several appropriate extraction parameters, the results indicated that the extraction recoveries of polycyclic aromatic hydrocarbons were in the range of 61.6–94.7%, with relative standard deviations between 2.9 and 5.4%, the calibration graph was linear in the concentration range of 1–100 μg/L (r > 0.9991) with limit of detection in the range of 0.15–0.19 μg/L (n = 3). Seawater samples were analyzed as real samples and good recoveries (68.5–99.5%) were obtained at different spiked values.  相似文献   

17.
The content of main flavonoids from Rhododendron adamsii R. leaves and stems was determined quantitatively using HPLC. It was found that myricetin and quercetin dominated the identified compounds (myricetin, quercetin, dihydroquercetin, rutin) in leaves; dihydroquercetin, in stems (1.1, 1.0, and 2.5 mass% of raw material, respectively). Dihydroquercetin and rutin were found for the first time in R. adamsii. Translated from Khimiya Prirodnykh Soedinenii, No. 1, pp. 26–29, January–February, 2009.  相似文献   

18.
Molecular imprinted polymer produced using quercetin as the imprinting compound was applied for the extraction of flavonol aglycones (quercetin and kaempferol) from Moringa oleifera methanolic extracts obtained using heated reflux extraction method. Identification and quantification of these flavonols in the Moringa extracts was achieved using high performance liquid chromatography with ultra violet detection. Breakthrough volume and retention capacity of molecular imprinted polymer SPE was investigated using a mixture of myricetin, quercetin and kaempferol. The calculated theoretical number of plates was found to be 14, 50 and 8 for myricetin, quercetin and kaempferol, respectively. Calculated adsorption capacities were 2.0, 3.4 and 3.7 μmol/g for myricetin, quercetin and kaempferol, respectively. No myricetin was observed in Moringa methanol extracts. Recoveries of quercetin and kaempferol from Moringa methanol extracts of leaves and flowers ranged from 77 to 85% and 75 to 86%, respectively, demonstrating the feasibility of using the developed molecularly imprinted SPE method for quantitative clean‐up of both of these flavonoids. Using heated reflux extraction combined with molecularly imprinted SPE, quercetin concentrations of 975 ± 58 and 845 ± 32 mg/kg were determined in Moringa leaves and flowers, respectively. However, the concentrations of kaempferol found in leaves and flowers were 2100 ± 176 and 2802 ± 157 mg/kg, respectively.  相似文献   

19.
In this work, a novel magnetic nanomaterial functionalized with a molecularly imprinted polymer was prepared for the extraction of protoberberine alkaloids. Molecularly imprinted polymers were made on the surface of Fe3O4 nanoparticles by using berberine as template, acetonitrile/water as porogen, acrylamide as functional monomer and ethylene glycol dimethacrylate as cross‐linker. The optimized molar ratio of template/functional monomer was 1:7. The polymeric magnetic nanoparticles were characterized by transmission electron microscopy and Fourier transform infrared spectroscopy. The stability and adsorption capacity of the molecularly imprinted polymers were investigated. The molecularly imprinted polymers were used as a selective sorbent for the magnetic molecularly imprinted solid‐phase extraction and determination of jatrorrhizine, palmatine, and berberine. Extraction parameters were studied including loading pH, sample volume, stirring speed, and extraction time. Finally, a magnetic molecularly imprinted solid‐phase extraction coupled to high‐performance liquid chromatography method was developed. Under the optimized conditions, the method showed good linear range of 0.1–150 ng/mL for berberine and 0.1–100 ng/mL for jatrorrhizine and palmatine. The limit of detection was 0.01 ng/mL for berberine and 0.02 ng/mL for jatrorrhizine and palmatine. The proposed method has been applied to determine protoberberine alkaloids in Cortex phellodendri and rat plasma samples. The recoveries ranged from 87.33–102.43%, with relative standard deviation less than 4.54% in Cortex phellodendri and from 102.22–111.15% with relative standard deviation less than 4.59% in plasma.  相似文献   

20.
We demonstrate a facile approach for smart time‐saving extraction of active components of rutin and rhoifolin by a new kind of magnetic particles (MPs). The inorganic borate functionalized magnetic particles are quasi‐spherical with an average diameter of 200–220 nm. The MPs were characterized by scanning electron microscopy and X‐ray diffraction techniques. The inorganic boron content in MPs was confirmed by electron‐dispersive X‐ray spectroscopy. The extraction and release efficiency of MPs were investigated. The smart borate‐decorated magnetic particles show a specific extraction towards the active components containing cis‐1,2 diol moieties. Rutin and rhoifolin were extracted at 16.55 and 22.49 mg/g, respectively. The recycling test shows that MPs can be reused and maintain a significant efficiency for seven cycles. Hence, a novel structured and reusable magnetic nanomaterial for extracting rutin and rhoifolin was developed. This strategy of specific extraction will be an important method to obtain the active components with some structure features through designing various structured particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号