首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural dynamics of a Mn-Na2WO4/SiO2 catalyst were detected directly under reaction conditions during the oxidative coupling of methane via in situ XRD and operando Raman spectroscopy. A new concept of fluctuating storage and release of an active phase in heterogeneous catalysis is proposed that involves the transient generation of active sodium oxide species via a reversible reaction of Na2WO4 with Mn7SiO12. The process is enabled by phase transitions and melting at the high reaction temperatures that are typically applied.  相似文献   

2.
《Comptes Rendus Chimie》2015,18(6):644-653
Different gases were employed to pretreat WO3/SiO2 for the metathesis of 1-butene and ethene to propene. Air-pretreated WO3/SiO2 was inactive, whereas N2-, N2/H2-, and H2-pretreated WO3/SiO2 exhibited high 1-butene conversion and propene selectivity. Tetragonal WO3 and partially reduced WO2.92 were found to be the active phases/species, whereas monoclinic WO3 was inactive. N2/H2- and H2-pretreated WO3/SiO2 contained both W6+ and W5+ species (i.e., nonstoichiometric WO3−x). Air- and N2-pretreated WO3/SiO2 only contained monoclinic W6+ species (WO3) before the reaction. However, the used N2-pretreated WO3/SiO2 contained both W6+ and W5+ species, suggesting that the N2 pretreatment can facilitate the formation of some W5+ species during the reaction. This in situ partial reduction can activate the N2-pretreated WO3/SiO2 for the metathesis.  相似文献   

3.
The experimentally validated computational models developed herein, for the first time, show that Mn-promotion does not enhance the activity of the surface Na2WO4 catalytic active sites for CH4 heterolytic dissociation during OCM. Contrary to previous understanding, it is demonstrated that Mn-promotion poisons the surface WO4 catalytic active sites resulting in surface WO5 sites with retarded kinetics for C–H scission. On the other hand, dimeric Mn2O5 surface sites, identified and studied via ab initio molecular dynamics and thermodynamics, were found to be more efficient in activating CH4 than the poisoned surface WO5 sites or the original WO4 sites. However, the surface reaction intermediates formed from CH4 activation over the Mn2O5 surface sites are more stable than those formed over the Na2WO4 surface sites. The higher stability of the surface intermediates makes their desorption unfavorable, increasing the likelihood of over-oxidation to COx, in agreement with the experimental findings in the literature on Mn-promoted catalysts. Consequently, the Mn-promoter does not appear to have an essential positive role in synergistically tuning the structure of the Na2WO4 surface sites towards CH4 activation but can yield MnOx surface sites that activate CH4 faster than Na2WO4 surface sites, but unselectively.

The experimentally validated computational models developed herein, for the first time, show that Mn-promotion does not necessarily enhance the activity of the surface Na2WO4 catalytic active sites for CH4 heterolytic dissociation during OCM.  相似文献   

4.
Methods for preparing catalysts for the oxidative condensation of methane based on a metal support (FeCrAl foil) containing Al2O3 and SiO2 and active ingredients (Na2WO4, Mn2O3, and PbO) are developed. The prepared catalysts are studied by XRD, XPS, and EM.  相似文献   

5.
A facile way to prepare modified WO3 structure by silica support through sol–gel method is reported. The WO3/SiO2 complex film was synthesized from a two steps process and dip-coating method. The films were characterized with laser particle analyzer, IR, Raman. The studies of gelation time and particle size distribution of WO3/SiO2 sol indicate that the silica addition could largely reduce the polycondensation of WO3 clusters. The reaction between WO3 and SiO2 were further systematically investigated using IR spectra, and an insight of this reaction was illuminated. Results reveal that Si–OH in SiO2 sols tended to crosslink with WO3 at the corner-sharing W–O sites, by which only edge-sharing WOx clusters could be detected. This modified the WO3 structure was also approved by the Raman spectra, TEM and AFM images. Moreover, gas sensing properties of the WO3/SiO2 films were tested. The assembled WO3 films exhibited more stable gas sensing stability than pure WO3 films.  相似文献   

6.
A WO3/SiO2 catalyst is used in industry to produce propylene from 2-butene and ethylene metathesis. Catalysts with various WO3 loading (4% to 10%) were prepared by impregnation and tested for the metathesis of ethene and trans-2-butene. Ion exchange of NaOH onto the WO3/SiO2 catalyst was used to mitigate the acidity of the catalysts in a controlled way. At low WO3 loading, the treatment with large amounts of NaOH resulted in a significant decrease in metathesis activity concomitant with significant W leaching and marked structural changes (XRD, Raman). At higher WO3 loading (6% to 10%), the treatment with NaOH mainly resulted in a decrease in acidity. FT-IR experiments after adsorption of pyridine showed that the Lewis acidic sites were poisoned by sodium. Nevertheless, the metathesis activity remained constant after the NaOH treatment. This suggested that the remaining acidity on the catalyst was enough to ensure the efficient formation of the carbene active sites. Interestingly, Na poisoning resulted in some modification of the selectivity. The mitigation of acidity was shown to favor propene selectivity over the formation of isomerization products (cis-2-butene, 1-butene, etc.). Moreover, treatment with NaOH led to a shorter induction period and reduced coke formation on the WO3/SiO2 catalyst.  相似文献   

7.
Phase equilibria in the Na2CO3-NaCl-H2O and Na2CO3-Na2WO4-H2O ternary systems formed by type 1 salts (NaCl, Na2WO4) and a type 2 salt (Na2CO3) were experimentally studied at temperatures from 425 to 500°C and pressures from 30 to 160 MPa with the contents of type 1 salts from 10 to 30 wt %. Transition from supercritical homogeneous fluid equilibria of the Na2CO3-H2O system to heterogeneous equilibria of the title ternary systems was studied in the presence or absence of liquid phase immiscibility in the type 1 subsystems.  相似文献   

8.
钨酸铋在水相体系中能光催化降解有机污染物,而对于钨酸铋光催化活性影响因素的研究非常少.本文研究了煅烧温度对花朵状钨酸铋光催化活性的影响.以钨酸钠和硝酸铋为原料,在160°C下水热反应20 h,合成催化剂,并经不同温度煅烧3 h.用X射线衍射(XRD)、拉曼(Raman)光谱、紫外-可见漫反射吸收光谱(UVVis DRS)和荧光(PL)光谱表征样品.结果表明,这些样品具有十分相似的相组成和电子结构.然而,对于水中苯酚的降解,钨酸铋的光催化活性显示出了很大的差异.钨酸铋的光催化活性随着煅烧温度的升高,先上升后下降,最优煅烧温度为350°C,并且不受样品比表面积大小的影响.这些样品的活性差异主要归结于钨酸铋的结晶度、吸光性和表面缺陷对其光生载流子分离效率的综合影响.  相似文献   

9.
A series of tungsten oxide-silica (WO3–SiO2) composite nanomaterials were synthesized through a novel, template-free sol-gel method, in which supercritical-CO2 (scCO2) was utilized as synthesis medium. The efficacy of the synthesis method stems from a tailored reactor design that allows the contact of the reactants only in the presence of scCO2. Selected synthetic parameters were screened with the purpose of enhancing the performance of the resulting materials as heterogeneous catalysts in epoxidation reactions with H2O2 as environmentally friendly oxidant. A cyclooctene conversion of 73% with epoxide selectivity of > 99% was achieved over the best WO3–SiO2 catalyst under mild reaction conditions (80 °C), equimolar H2O2 amount (1:1) and low WO3 loading (~2.5 wt%). The turnover number achieved with this catalyst (TON = 328), is significantly higher than that of a WO3–SiO2 prepared via a similar sol-gel route but without supercritical CO2, and that of commercial WO3. A thorough characterization with a combination of techniques (ICP-OES, N2-physisorption, XRD, TEM, STEM-EDX, SEM-EDX, FT-IR and Raman spectroscopy, XPS, TGA and FT-IR analysis of adsorbed pyridine) allowed correlating the physicochemical properties of the WO3–SiO2 nanomaterials with their catalytic performance. The high catalytic activity was attributed to: (i) the very high surface area (892 m2/g) and (ii) good dispersion of the W species acting as Lewis acid sites, which were both brought about by the synthesis in supercritical CO2, and (iii) the relatively low hydrophilicity, which was tuned by optimizing the tetramethyl orthosilicate concentration and the amount of basic solution used in the synthesis of the materials. Our optimum catalyst was also tested in the reaction of cyclohexene with H2O2, resulting in cyclohexane diol as main product due to the presence of strong Brønsted acid sites in the catalyst, whereas the reaction with limonene yielded the internal epoxide as the major product and the corresponding diol as side product. Importantly, the catalyst did not show leaching and could be reused in five consecutive runs without any decrease in activity.  相似文献   

10.
Pure orthorhombic phase Bi2WO6 powders were synthesized by a microwave hydrothermal method in the absence of surfactants and templates, using Bi(NO3)3·5H2O and Na2WO4·2H2O as raw materials. Photocatalytic properties of the samples prepared at different reaction temperatures were also studied with Rhodamine B (RhB) solution as the target catabolite under visible light. The results indicate that flower-like Bi2WO6 powders can be obtained by controlling the microwave reaction temperatures in the absence of any additives. The growth of flower-like Bi2WO6 powders is a multistage layer assembly process, in which the flower-like Bi2WO6 self-assembling with the uniform size about 2 μm is synthesized at 180 °C. At the same time, the photocatalytic reaction rate constant (k) gets up to 0.04167/min and the degradation rate of RhB solution is more than 96 % after being irradiated under visible light for 70 min.  相似文献   

11.
The x, T-phase diagram of the binary system Na2WO4Na2MoO4 has been redetermined at ambient pressure, taking into account the influence of hysteresis effects. Thermodynamic calculations, based upon transition entropies as determined by precision DSC (differential scanning calorimetry), indicate that the system is almost ideal with respect to the high-temperature phases.As anion dopes, Na2SO4 and Na2CrO4 give a metastable extension of the β-phase of Na2WO4 at decreasing temperature, involving some 40°C at 0.01 mole fraction of dopant. Cation dopes like Li2WO4 and K2WO4 behave quite differently.The electrical conductivity through the phase diagram is high in the α-phase (σ ~ 10?2 mho cm?1) almost regardless of composition. The anomalous high conductivity of the β-phase decreases with increasing molybdate content. In pure Na2MoO4 an anomaly occurs at the α-α2 transition, resembling the behavior of Na2WO4 at the β-α transition. The (highest) α2-phase is hexagonal, (P63mmc, showing large anisotropic thermal vibrations. The α-phase is orthorhombic (Fddd) as is the β-phase (probably Pbn21).  相似文献   

12.
The phase diagrams of the NaBO2-NaCl-Na2CO3, NaBO2-Na2CO3-Na2MoO4, NaBO2- Na2CO3-Na2WO4, and NaBO2-NaCl-Na2WO4 ternary systems were studied by a calculation-experimental method and differential thermal analysis. The coordinates of ternary eutectics were determined: E 1: 612°C, 16 mol % NaBO2, 42 mol % NaCl, and 42 mol % Na2CO3; E 2: 568°C, 12 mol % NaBO2, 28 mol % Na2CO3, and 60 mol % Na2MoO4; E 3: 575°C, 12 mol % NaBO2, 32 mol % Na2CO3, and 56 mol % Na2WO4; E 4: 628°C, 8 mol % NaBO2, 20 mol % NaCl, and 72 mol % Na2WO4; and E 5: 655°C, 9 mol % NaBO2, 53 mol % NaCl, and 38 mol % Na2WO4.  相似文献   

13.
{Na(OCH3)[H3N(CH2)2NH2]2}[WO2(C10H6O2)2] (1) was obtained by the reaction of Na2WO4 · 2H2O with 2,3-dihydroxynaphthalene and ethylenediamine. [H2N(CH2)3NH3]2[WO2(C10H6O2)2] (2) was synthesized by the reaction of Na2WO4 · 2H2O with 2,3-dihydroxynaphthalene and 1,3-propylenediamine. Complex 1 was a one-dimensional chain-like structure and the Na atom is in the structure, while complex 2 was a discrete monomer without Na in its structure. The two complexes were synthesized in the same reaction conditions, except that protonated ethylenediamine was used in reaction 1, but 1,3-propylenediamine in reaction 2.  相似文献   

14.
The metathesis of ethene and 2-butene to propene was studied over WO3/SiO2 catalysts with various WO3 loadings (2, 4, 8, 12, 16, and 24 wt%). The 2-butene conversion and propene selectivity increased greatly with WO3 loading increasing from 2 to 8 wt%, reached maximum at 8–12 wt% WO3 loading, and then decreased when the WO3 loading was higher than 12 wt%. From the above results and taking the economics into account, the optimal amount of WO3 loading was ~8 wt%. The catalysts were characterized by physico-chemical and spectroscopic techniques to elucidate the effect of different tungsten oxide loadings on the metathesis reactivity of ethene and 2-butene. The characterization data indicated that three types of tungsten species (i.e., surface tetrahedral tungsten species, surface octahedral polytungstate species, and WO3 crystallites) were present in the catalysts. It was found that WO3 was not the active centers, and surface tetrahedral tungsten species might be more active than octahedral polytungstate species in metathesis reaction. The reduced form of tungsten species [W+4, W+5, and W+(6−y) (0 < y < 1)] may be the suitable state of W species acting as metathesis active centers.  相似文献   

15.
The phase analysis of cryolite (Na3AlF6) and sodium metasilicate (Na2SiO3) was performed by thermal analysis. The eutectic system with a region of two immiscible substances at a concentration of Na2SiO3 between 42.8 and 46.3 mol‐% was identified and the eutectic temperature determined to (886±2) °C. Based on the results of mass‐loss measurements, it was assumed that the introduced Na2SiO3 reacts with Na3AlF6 due to the formation of some nonvolatile stable compounds. The stable reaction products were identified by X‐ray diffraction analysis and IR spectroscopy of the spontaneously cooled samples, which established the formation of NaF and stable amorphous aluminosilicate compounds.  相似文献   

16.

Orthophosphoric acid solutions of sodium orthovanadate, sodium tungstate, and sodium molybdate are tested as potential corrosion inhibitors of the Al2Cu intermetallic phase. Corrosion inhibition is observed for 0.2 M solutions of Na3VO4 and Na2WO4 by increasing the pH to > 2. When the pH is < 2, the aforementioned salts increase the corrosion rate of the intermetallic phase. A 0.2 M solution of Na3VO4 causes the precipitation of vanadium phosphate on the surface of the Al2Cu phase at pH = 1.

  相似文献   

17.
Nanosized aluminum tungstate, Al2(WO4)3, is prepared by a precipitation reaction between Na2WO4 and Al(NO3)3. The structure of the precipitated composition is determined by powder XRD analysis, IR and 27Al MAS NMR spectroscopy. The thermal properties are examined by DSC, DTA and TG analyses combined with gas evolved analysis. Particle sizes and morphology are examined by TEM analysis. Precipitation reaction leads to the formation of an amorphous composition, which consists of dimer and trimer aluminum hydroxide species and WO42? groups. Finely dispersed particles with dimensions of about 25 nm are formed. The precipitated composition is decomposed to amorphous Al2(WO4)3 immediately after H2O release. At 630 °C, amorphous Al2(WO4)3 crystallizes in an orthorhombic modification of Al2(WO4)3, the enthalpy of crystallization being 58 kJ/mol. The nanosized particles remain intact after the crystallization of amorphous Al2(WO4)3. A significant particle growth take places when nanosized Al2(WO4)3 is heated from 600 to 800 °C.  相似文献   

18.
用气液反应法和化学溶液分解技术(CSD)分别制备了WO3和Bi12SiO20粉末,并将二者耦合,合成出WO3/Bi12SiO20复合光催化剂.以气相苯的降解为探针反应,考查了催化剂的光催化活性.结果表明:耦合后的WO3/Bi12SiO20催化剂的催化活性显著提高,其中30%(w)WO3/Bi12SiO20在紫外光下对苯的降解率明显优于P-25,而且催化剂具有一定的可见光响应能力.采用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、N2吸附-脱附(BET)和紫外-可见漫反射(UV-VisDRS)等手段对催化剂进行了表征.结果表明:WO3与Bi12SiO20之间存在良好的能带协同作用.WO3与Bi12SiO20耦合后,催化剂的光响应范围拓宽,光生电子和空穴能有效地分离,光生电子和空穴产生速率增大,所以催化剂活性提高.  相似文献   

19.
Supported Na2WO4/ZSM5 as catalyst was used for deep oxidative desulfurization (ODS) of mixed thiophenic compounds model oil and natural gas condensate under mild conditions by using hydrogen peroxide as oxidant. A one factor at a time optimization strategy was applied for optimizing the parameters such as temperature, loading of catalysts, reaction time, type of extractant and oxidant to S‐compounds molar ratio. The corresponding products can be easily removed from the model by using MeCN as best extractant. Results showed highly catalytic activity of Na2WO4/ZSM5 for the oxidative removal of dibenzothiophene and mixed thiophenic model oil under atmospheric pressure at 75 °C in a biphasic system. By applying the ODS to mixed model/MeCN and gas condensate/MeCN, the conversion reached to 94 and 81 %, respectively, using 40 % loading Na2WO4/ZSM5 as catalysis under the optimal conditions. To investigate the oxidation and adsorption effects of gas condensate composition on ODS, effects of cyclohexene, 1,7‐octadiene, and o‐xylene were studied with different concentrations.  相似文献   

20.
Synthesis and Crystal Structure of Sodium Tetraoxo Nitrido Tungstate(VI), Na5WO4N Colourless crystals of Na5WO4N are obtained besides Na4WO2N2 [1] by the reaction of WO3 with NaNH2 (15:1) at 350°C ≥ T ≥ 750°C in autoclaves to prevent early decomposition of sodium amide. X-ray single crystal investigations are characterized by the following data:
  • Na5WO4N: Cmc21 (No. 36), Z = 4
  • a = 9.873(2) Å, b = 5.769(1) Å, c = 10.648(2) Å
  • Z(F)≥ 3σ(F) = 2182, Z(Var.) = 55, R/Rw = 0.029/0.039
The structure contains the tetragonal pyramidal ion WO4N5? with nitrogen at the apex connected via Na+ ions irregularly coordinated by one nitrogen and four oxygen atoms of different anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号