共查询到20条相似文献,搜索用时 15 毫秒
1.
Zekra Mousavi Agnieszka Teter Andrzej Lewenstam Magdalena Maj‐Zurawska Ari Ivaska Johan Bobacka 《Electroanalysis》2011,23(6):1352-1358
Multi‐walled carbon nanotubes (MWCNTs) were compared with poly(3‐octylthiophene) (POT) as ion‐to‐electron transducer in all‐solid‐state potassium ion‐selective electrodes with valinomycin‐based ion‐selective membranes. MWCNTs and POT were mixed with the other components of the potassium ion‐selective membrane cocktail (valinomycin, KTpClPB, o‐NPOE, PVC, THF) which was then applied on a glassy carbon (GC) substrate to prepare single‐piece ion‐selective electrodes (SPISEs). Results from potentiometric and impedance measurements showed that the MWCNT‐based electrodes have a more reproducuible standard potential and a lower overall impedance than the electrodes based on POT. Both types of electrodes showed similar sensitivity to potassium ions and no redox sensitivity. 相似文献
2.
Fluorescence quenching processes of poly[2-methoxy-5-(2‘ethyl-hexoxy)-p-phenylene vinylene] (MEH-PPV) in solution by electron acceptors, O2 and acid, have been studied. Static quenching of the fluorescence from MEH-PPV by an electron acceptor (DDQ or TCNE) occurs due to electron transfer from MEH-PPV to the electron acceptor and this electron transfer quenching can be promoted by chloroform. Photooxidation takes place in the MEH-PPV solution and singlet oxygen is an intermediate in the photooxidation, according to the results of ESR spectroscopy. Acid also plays an important role in the fluorescence quenching process of MEH-PPV, by the protonation of the alkoxy groups in the molecular chain. 相似文献
3.
Il Kim Jia‐Min Zhou Hoeil Chung 《Journal of polymer science. Part A, Polymer chemistry》2000,38(9):1687-1697
Polymerizations of higher α‐olefins, 1‐pentene, 1‐hexene, 1‐octene, and 1‐decene were carried out at 30 °C in toluene by using highly isospecific rac‐Me2Si(1‐C5H2‐2‐CH3‐4‐t Bu)2Zr(NMe2)2 (rac‐1) compound in the presence of Al(iBu)3/[CPh3][B(C6F5)4] as a cocatalyst formulation. Both the bulkiness of monomer and the lateral size of polymer influenced the activity of polymerization. The larger lateral of polymer chain opens the π‐ligand of active site wide and favors the insertion of monomer, while the large size of monomer inserts itself into polymer chain more difficultly due to the steric hindrance. Highly isotactic poly(α‐olefin)s of high molecular weight (MW) were produced. The MW decreased from polypropylene to poly(1‐hexene), and then increased from poly(1‐hexene) to poly(1‐decene). The isotacticity (as [mm] triad) of the polymer decreased with the increased lateral size in the order: poly(1‐pentene) > poly(1‐hexene) > poly(1‐octene) > poly(1‐decene). The similar dependence of the lateral size on the melting point of polymer was recorded by differential scanning calorimetry (DSC). 1H NMR analysis showed that vinylidene group resulting from β‐H elimination and saturated methyl groups resulting from chain transfer to cocatalyst are the main end groups of polymer chain. The vinylidene and internal double bonds are also identified by Raman spectroscopy. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1687–1697, 2000 相似文献
4.
Han‐Ying Li Hong‐Zheng Chen Jing‐Zhi Sun Jian Cao Zheng‐Long Yang Mang Wang 《Macromolecular rapid communications》2003,24(12):715-717
Carbon black (CB) nanoparticles were encapsulated by poly(vinyl alcohol) (PVA) by a simple method of coacervation. Transmission electron microscopy (TEM) images clearly demonstrated that the successful encapsulation of PVA happened at the surfaces of CB nanoparticles. The particle‐size distribution measurements indicated that the diameters of the obtained PVA‐encapsulated CB (CB@PVA) nanoparticles were distributed within the nanoscale dimension. This strategy avoids the complicated polymerization process involved in the counterpart of polymer‐coating approaches.
5.
Irradiation of HX (X=CF3SO3 or CF3CO2) salts of 1‐aryl‐4‐pyridylbutadienes 1 a – 1 c in the solid‐state afforded syn head‐to‐tail dimers in good yields among a number of possible dimers, whereas irradiation of the neutral substrates gave a complex mixture or no products. A comparison of the X‐ray crystal structures of the neutral compounds and the HX salts clarified that their orientation modes are head‐to‐head and head‐to‐tail, respectively. Moreover, while the distances between the two neighboring double bonds of the neutral compounds are relatively far apart from each other, those of HX salts are close together, satisfying Schmidt's requirement. These findings suggested that cation‐π interactions between the pyridinium and aromatic rings are effective for the preorientation of the HX salts of substrates, leading to photodimers in high regio‐ and stereoselectivities. 相似文献
6.
Photoinduced Energy Transfer from Poly(N‐vinylcarbazole) to Tricarbonylchloro‐(2,2′‐bipyridyl)rhenium(I) 下载免费PDF全文
Dr. Engelbert Portenkirchner Dogukan Apaydin Gottfried Aufischer Dr. Marek Havlicek Prof. Matthew White Prof. Markus Clark Scharber Prof. Niyazi Serdar Sariciftci 《Chemphyschem》2014,15(16):3634-3638
This work investigates the photoinduced energy transfer from poly(N‐vinylcarbazole) (PVK), as a donor material, to fac‐(2,2′‐bipyridyl)Re(CO)3Cl, as a catalyst acceptor, for its potential application towards CO2 reduction. Photoluminescence quenching experiments reveal dynamic quenching through resonance energy transfer in solid donor/acceptor mixtures and in solid/liquid systems. The bimolecular reaction rate constant at solution–film interfaces for the elementary reaction of the excited state with the quencher material could be determined as 8.8(±1.4)×1011 L mol?1 s?1 by using Stern–Volmer analysis. This work shows that PVK is an effective and cheap absorber material that can act efficiently as a redox photosensitizer in combination with fac‐(2,2′‐bipyridyl)Re(CO)3Cl as a catalyst acceptor, which might lead to possible applications in photocatalytic CO2 reduction. 相似文献
7.
8.
Eda Gungor Hakan Durmaz Gurkan Hizal Umit Tunca 《Journal of polymer science. Part A, Polymer chemistry》2008,46(13):4459-4468
H‐shaped quintopolymer containing different five blocks: poly(ε‐caprolactone) (PCL), polystyrene (PS), poly(ethylene glycol) (PEG), and poly(methyl methacrylate) (PMMA) as side chains and poly(tert‐butyl acrylate) (PtBA) as a main chain was simply prepared from a click reaction between azide end‐functionalized PCL‐PS‐PtBA 3‐miktoarm star terpolymer and PEG–PMMA‐block copolymer with alkyne at the junction point, using Cu(I)/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) as a catalyst in DMF at room temperature for 20 h. The H‐shaped quintopolymer was obtained with a number–average molecular weight (Mn) around 32,000 and low polydispersity index (Mw/Mn) 1.20 as determined by GPC analysis in THF using PS standards. The click reaction efficiency was calculated to have 60% from 1H NMR spectroscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4459–4468, 2008 相似文献
9.
Ozcan Altintas Gurkan Hizal Umit Tunca 《Journal of polymer science. Part A, Polymer chemistry》2008,46(4):1218-1228
Two samples of ABCD 4‐miktoarm star quarterpolymer with A = polystyrene (PS), B = poly(ε‐caprolactone) (PCL), C = poly(methyl methacrylate) (PMMA) or poly(tert‐butyl acrylate) (PtBA), and D = poly(ethylene glycol) (PEG) were prepared using click reaction strategy (Cu(I)‐catalyzed Huisgen [3 + 2] reaction). Thus, first, predefined block copolymers of different polymerization routes, PS‐b‐PCL with azide and PMMA‐b‐PEG and PtBA‐b‐PEG copolymers with alkyne functionality, were synthesized and then these blocks were combined together in the presence of Cu(I)/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as a catalyst in DMF at room temperature to give the target 4‐miktoarm star quarterpolymers. The obtained miktoarm star quarter polymers were characterized by GPC, NMR, and DSC measurements. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1218–1228, 2008 相似文献
10.
Savarimuthu Philip Anthony 《化学:亚洲杂志》2012,7(2):374-379
2‐(2‐Hydroxy‐phenyl)‐4(3H)‐quinazolinone (HPQ), an organic fluorescent material that exhibits fluorescence by the excited‐state intramolecular proton‐transfer (ESIPT) mechanism, forms two different polymorphs in tetrahydrofuran. The conformational twist between the phenyl and quinazolinone rings of HPQ leads to different molecular packing in the solid state, giving structures that show solid‐state fluorescence at 497 and 511 nm. HPQ also shows intense fluorescence in dimethyl formamide (DMF) solution and selectively detects Zn2+ and Cd2+ ions at micromolar concentrations in DMF. Importantly, HPQ not only detects Zn2+ and Cd2+ ions selectively, but it also distinguishes between the metal ions with a fluorescence λmax that is blue‐shifted from 497 to 420 and 426 nm for Zn2+ and Cd2+ ions, respectively. Hence, tunable solid‐state fluorescence and selective metal‐ion‐sensor properties were demonstrated in a single organic material. 相似文献
11.
Handan Akpinar Şevki Can Cevher Lang Wei Ali Cirpan Bryan M. Wong Dhandapani Venkataraman Paul M. Lahti 《Journal of Polymer Science.Polymer Physics》2015,53(21):1539-1545
Poly((2‐Alkylbenzo[1,2,3]triazole‐4,7‐diyl)vinylene)s (pBTzVs) synthesized by Stille coupling show different absorption spectra, solid‐state morphology, and photovoltaic performance, depending on straight‐chain versus branched‐chain (pBTzV12 and pBTzV20) pendant substitution. Periodic boundary condition density functional computations show limited alkyl pendant effects on isolated chain electronic properties; however, pendants could influence polymer backbone conjugative planarity and polymer solid film packing. The polymers are electronically ambipolar, with best performance by pBTzV12 with hole and electron transport mobilities of 4.86 × 10?6 and 1.96 × 10?6 cm2 V?1 s?1, respectively. pBTzV12 gives a smooth film morphology, whereas pBTzV20 gives a very different fibrillar morphology. For ITO/PEDOT:PSS/(1:1 w/w polymer:PC71BM)/LiF/Al devices, pBTzV12 gives power conversion efficiency (PCE) up to 2.87%, and pBTzV20 gives up to PCE = 1.40%; both have open‐circuit voltages of VOC = 0.6–0.7 V. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1539–1545 相似文献
12.
Chin‐Ping Yang Yu‐Yang Su 《Journal of polymer science. Part A, Polymer chemistry》2006,44(9):3140-3152
A novel series of colorless and highly organosoluble poly(ether imide)s were prepared from 3,3‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]phthalide dianhydride with various fluorinated aromatic bis(ether amine)s via a conventional two‐stage process that included ring‐opening polyaddition to form the poly(amic acid)s followed by cyclodehydration to produce the polymer films. The poly(ether imide)s showed excellent solubility, with most of them dissoluble at a concentration of 10 wt % in amide polar solvents, in ether‐type solvents, and even in chlorinated solvents. Their films had a cutoff wavelength between 358 and 373 nm, and the yellowness index ranged from 3.1 to 9.5. The glass‐transition temperatures of the poly(ether imide) series were recorded between 237 and 297 °C, the decomposition temperatures at 10% weight loss were all above 494 °C, and the residue was more than 54% at 800 °C in nitrogen. These films showed high tensile strength and also were characterized by higher solubility, lighter color, and lower dielectric constants and moisture absorption than an analogous nonfluorinated polyimide series. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3140–3152, 2006 相似文献
13.
Novel Cationic Triblock Copolymer of Poly[2‐(dimethylamino)ethyl methacrylate]‐block‐poly(β‐amino ester)‐block‐poly[2‐(dimethylamino)ethyl methacrylate]: A Promising Non‐Viral Gene Delivery System 下载免费PDF全文
Rosemeyre A. Cordeiro Dina Farinha Nuno Rocha Arménio C. Serra Henrique Faneca Jorge F. J. Coelho 《Macromolecular bioscience》2015,15(2):215-228
14.
Der‐Jang Liaw I‐Wen Chen Wen‐Hsiang Chen Shu‐Ling Lin 《Journal of polymer science. Part A, Polymer chemistry》2002,40(15):2556-2563
A new bis(ether anhydride), 3,3′,5,5′‐tetramethyl‐2,2‐bis[4‐(4‐dicarboxyphenoxy)phenyl]propane dianhydride ( 3 ), was prepared in three steps: the nitro displacement of 4‐nitrophthalonitrile with 2,2‐bis(4‐hydroxy‐3,5‐dimethylphenyl)propane, the alkaline hydrolysis of the intermediate bis(ether dinitrile), and the subsequent dehydration of the resulting bis(ether diacid). A series of new highly soluble poly(ether imide)s with tetramethyl and isopropylidene groups were prepared from the bis(ether anhydride) 3 with various diamines by a conventional two‐stage synthesis including polyaddition and chemical cyclodehydration. The resulting poly(ether imide)s had inherent viscosities of 0.54–0.73 dL g?1. Gel permeation chromatography measurements revealed that the polymers had number‐average and weight‐average molecular weights of up to 54,000 and 124,000, respectively. All the polymers showed typical amorphous diffraction patterns. All of the poly(ether imide)s showed excellent solubility and were readily dissolved in various solvents such as N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide, N,N‐dimethylformamide, pyridine, cyclohexanone, tetrahydrofuran, and even chloroform. Most of the polymers could be dissolved with chloroform concentrations as high as 30 wt %. These polymers had glass‐transition temperatures of 244–282 °C. Thermogravimetric analysis showed that all polymers were stable, with 10% weight losses recorded above 463 °C in nitrogen. These transparent, tough, and flexible polymer films were obtained through solution casting from N,N‐dimethylacetamide solutions. These polymer films had tensile strengths of 81–102 MPa and tensile moduli of 1.8–2.0 GPa. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2556–2563, 2002 相似文献
15.
Yuxian An Lixia Li Lisong Dong Zhishen Mo Zhiliu Feng 《Journal of Polymer Science.Polymer Physics》1999,37(5):443-450
Nonisothermal crystallization and melting behavior of poly(β‐hydroxybutyrate) (PHB)–poly(vinyl acetate) (PVAc) blends from the melt were investigated by differential scanning calorimetry using various cooling rates. The results show that crystallization of PHB from the melt in the PHB–PVAc blends depends greatly upon cooling rates and blend compositions. For a given composition, the crystallization process begins at higher temperatures when slower scanning rates are used. At a given cooling rate, the presence of PVAc reduces the overall PHB crystallization rate. The Avrami analysis modified by Jeziorny and a new method were used to describe the nonisothermal crystallization process of PHB–PVAc blends very well. The double‐melting phenomenon is found to be caused by crystallization during heating in DSC. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 443–450, 1999 相似文献
16.
Chin‐Ping Yang Chien‐Wen Yu 《Journal of polymer science. Part A, Polymer chemistry》2001,39(6):788-799
A bis(ether anhydride) monomer, 1,1‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]cyclohexane dianhydride ( IV‐A ), was synthesized from the nitro displacement of 4‐nitrophthalodinitrile by the phenoxide ion of 1,1‐bis(4‐hydroxyphenyl)cyclohexane ( I‐A ), followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and dehydration of the resulting bis(ether acid). A novel series of organosoluble poly(ether imide)s ( VI a–i )(PEIs) bearing cyclohexylidene cardo groups was prepared from the bis(ether anhydride) IV‐A with various aromatic diamines V a–i via a conventional two‐stage process. The PEIs had inherent viscosities in the range of 0.48–1.02 dL/g and afforded flexible and tough films by solution‐casting because of their good solubilities in organic solvents. Most PEIs showed yield points in the range of 89–102 MPa at stress‐strain curves and had tensile strengths of 78–103 MPa, elongations at breaks of 8–62%, and initial moduli of 1.8–2.2 GPa. The glass‐transition temperatures (Tg's) of these PEIs were recorded between 200–234 °C. Decomposition temperatures of 10% weight loss all occurred above 490 °C in both air and nitrogen atmospheres, and their residues were more than 43% at 800 °C in nitrogen atmosphere. The cyclohexane cardo‐based PEIs exhibited relatively higher Tg's, better solubilities in organic solvents, and better tensile properties as compared with the corresponding Ultem® PEI system. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 788–799, 2001 相似文献
17.
A series of perfluorophenyl‐substituted dithienophosphole derivates has been synthesized. Investigation of their photophysical properties, as well as their organization in the solid state reveals that these properties can be manipulated via introduction of bromine substituents in 2,6‐position of the dithienphosphole scaffold, as well as the complexation of the phosphorus center with an electron rich gold(I) fragment. The strongly electron‐withdrawing character of the perfluorophenyl‐group surmounts the effect of the oxidation of the phosphorus center with respect to photophysics, leading to leading to optoelectronic features similar to those of the trivalent phosphole species. The trivalent phosphole species. The solid‐state organization of the members of this perfluorinated dithienophosphole family, on the other hand, strongly depends on the heteroatoms present within the system, as close intermolecular interactions can be observed between varieties of different atoms (Au‐Au, Br‐Br, Br‐O, Br‐C, F‐C, O‐S), next to regular C‐C π‐stacking interactions. 相似文献
18.
《Macromolecular rapid communications》2017,38(3)
Star copolymers are known to phase separate on the nanoscale, providing useful self‐assembled morphologies. In this study, the authors investigate synthesis and assembly behavior of miktoarm star (μ‐star) copolymers. The authors employ a new strategy for the synthesis of unprecedented μ‐star copolymers presenting poly(N‐octyl benzamide) (PBA) and poly(ε‐caprolactone) (PCL) arms: a combination of chain‐growth condensation polymerization, styrenics‐assisted atom transfer radical coupling, and ring‐opening polymerization. Gel permeation chromatography, mass‐analyzed laser desorption/ionization mass spectrometry, and 1H NMR spectroscopy reveal the successful synthesis of a well‐defined (PBA11)2‐(PCL15)4 μ‐star copolymer (M n,NMR ≈ 12 620; Đ = 1.22). Preliminary examination of the PBA2PCL4 μ‐star copolymer reveals assembled nanofibers having a uniform diameter of ≈20 nm.
19.
Youjun He Yi Zhou Guangjin Zhao Jie Min Xia Guo Bo Zhang Maojie Zhang Jing Zhang Yongfang Li Fengling Zhang Olle Inganäs 《Journal of polymer science. Part A, Polymer chemistry》2010,48(8):1822-1829
A new benzodithiophene (BDT)‐based polymer, poly(4,8‐bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene vinylene) (PBDTV), was synthesized by Pd‐catalyzed Stille‐coupling method. The polymer is soluble in common organic solvents and possesses high thermal stability. PBDTV film shows a broad absorption band covering from 350 nm to 618 nm, strong photoluminescence peaked at 545 nm and high hole mobility of 4.84 × 10?3 cm2/Vs. Photovoltaic properties of PBDTV were studied by fabricating the polymer solar cells based on PBDTV as donor and PC70BM as acceptor. With the weight ratio of PBDTV: PC70BM of 1:4 and the active layer thickness of 65 nm, the power conversion efficiency of the device reached 2.63% with Voc = 0.71 V, Isc = 6.46 mA/cm2, and FF = 0.57 under the illumination of AM1.5, 100 mW/cm2. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1822–1829, 2010 相似文献
20.
Gamal R. Saad 《Macromolecular bioscience》2001,1(9):387-396
Two series of segmented poly(ester‐urethane)s were synthesized from bacterial poly[(R)‐3‐hydroxybutyrate]‐diol (PHB‐diol), as hard segments, and either poly(ε‐caprolactone)‐diol (PCL‐diol) or poly(butylene adipate)‐diol (PBA‐diol), as soft segments, using 1,6‐hexamethylene diisocyanate as a chain extender. The hard‐segment content varied from 0 to 50 wt.‐%. These materials were characterized using 1H NMR spectroscopy and GPC. The polymers obtained were investigated calorimetrically and dielectrically. DSC showed that the Tg of either the PCL or PBA soft segments are shifted to higher temperatures with increasing PHB hard‐segment content, revealing that either the PCL or PBA are mixed with small amounts of PHB in the amorphous domains. The results also showed that the crystallization of soft or hard segments was physically constrained by the microstructure of the other crystalline phase, which results in a decrease in the degree of crystallinity of either the soft or hard segments upon increase of the other component. The dielectric spectra of poly(ester‐urethane)s, based on PCL and PHB, showed two primary relaxation processes, designated as αS and αH, which correspond to glass–rubber transitions of PCL soft and PHB hard segments, respectively. Whereas in the case of other poly(ester‐urethane)s, derived from PBA and PHB, only one relaxation process was observed, which broadens and shifts to higher temperature with increasing PHB hard‐segment content. It was concluded from these results that our investigated materials exhibit micro‐phase separation of the hard and soft segments in the amorphous domains. 相似文献