首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 395 毫秒
1.
In a high‐yield one‐pot synthesis, the reactions of [Cp*M(η5‐P5)] (M=Fe ( 1 ), Ru ( 2 )) with I2 resulted in the selective formation of [Cp*MP6I6]+ salts ( 3 , 4 ). The products comprise unprecedented all‐cis tripodal triphosphino‐cyclotriphosphine ligands. The iodination of [Cp*Fe(η5‐As5)] ( 6 ) gave, in addition to [Fe(CH3CN)6]2+ salts of the rare [As6I8]2? (in 7 ) and [As4I14]2? (in 8 ) anions, the first di‐cationic Fe‐As triple decker complex [(Cp*Fe)2(μ,η5:5‐As5)][As6I8] ( 9 ). In contrast, the iodination of [Cp*Ru(η5‐As5)] ( 10 ) did not result in the full cleavage of the M?As bonds. Instead, a number of dinuclear complexes were obtained: [(Cp*Ru)2(μ,η5:5‐As5)][As6I8]0.5 ( 11 ) represents the first Ru‐As5 triple decker complex, thus completing the series of monocationic complexes [(CpRM)2(μ,η5:5‐E5)]+ (M=Fe, Ru; E=P, As). [(Cp*Ru)2As8I6] ( 12 ) crystallizes as a racemic mixture of both enantiomers, while [(Cp*Ru)2As4I4] ( 13 ) crystallizes as a symmetric and an asymmetric isomer and features a unique tetramer of {AsI} arsinidene units as a middle deck.  相似文献   

2.
Triangulated Dodecahedral Heterotrimetallic‐ and ‐tetrametallic Iron–Ruthenium Clusters with CpR and Pn Ligands (n = 5, 4) The cothermolysis of [Cp*Fe(η5‐P5)] ( 1 ) and [{Cp″(OC)2Ru}2](Ru–Ru) ( 2 ), Cp″ = C5H3But2‐1,3, affords low yields of [Cp″Ru(η5‐P5)] ( 3 ) and [{Cp″Ru}2P4] ( 4 ) as well as the triangulated dodecahedral hetero‐ and homotrimetallic clusters [{Cp″Ru}2{Cp*Fe}P5] ( 5 ), [{Cp″Ru}3P5] ( 6 ), [{Cp*Fe}2{Cp″Ru}P5] ( 7 ) and the tetranuclear compound [{Cp″Ru}3{Cp*Fe}P4] ( 8 ). X‐ray crystallographic studies show that the P5 ligand in the distorted M2M′P5‐triangulated dodecahedra of 5 and 7 offers an unusual novel coordination mode derived from the educt 1 .  相似文献   

3.
Treatment of the pentaphosphaferrocene [Cp*Fe(η5‐P5)] with CuI halides in the presence of different templates leads to novel fullerene‐like spherical molecules that serve as hosts for the templates. If ferrocene is used as the template the 80‐vertex ball [Cp2Fe]@[{Cp*Fe(η5‐P5)}12{CuCl}20] ( 4 ), with an overall icosahedral C80 topological symmetry, is obtained. This result shows the ability of ferrocene to compete successfully with the internal template of the reaction system [Cp*Fe(η5‐P5)], although the 90‐vertex ball [{Cp*Fe(η511111‐P5)}12(CuCl)10(Cu2Cl3)5{Cu(CH3CN)2}5] ( 2 a ) containing pentaphosphaferrocene as a guest is also formed as a byproduct. With use of the triple‐decker sandwich complex [(CpCr)2(μ,η5‐As5)] as a template the reaction between [Cp*Fe(η5‐P5)] and CuBr leads to the 90‐vertex ball [(CpCr)2(μ,η5‐As5)]@[{Cp*Fe(η5‐P5)}12{CuBr}10{Cu2Br3}5{Cu(CH3CN)2}5] ( 6 ), in which the complete molecule acts as a template. However, if the corresponding reaction is instead carried out with CuCl, cleavage of the triple‐decker complex is found and the 80‐vertex ball [CpCr(η5‐As5)]@[{Cp*Fe(η5‐P5)}12{CuCl}20] ( 5 ) is obtained. This accommodates as its guest [CpCr(η5‐As5)], which has only 16 valence electrons in a triplet ground state and is not known as a free molecule. The triple‐decker sandwich complex [(CpCr)2(μ,η5‐As5)] requires 53.1 kcal mol?1 to undergo cleavage (as calculated by DFT methods) and therefore this reaction is clearly endothermic. All new products have been characterized by single‐crystal X‐ray crystallography. A favoured orientation of the guest molecules inside the host cages has been identified, which shows π???π stacking of the five‐membered rings (Cp and cyclo‐As5) of the guests and the cyclo‐P5 rings of the nanoballs of the hosts.  相似文献   

4.
Unprecedented functionalized products with an η4‐P5 ring are obtained by the reaction of [Cp*Fe(η5‐P5)] ( 1 ; Cp*=η5‐C5Me5) with different nucleophiles. With LiCH2SiMe3 and LiNMe2, the monoanionic products [Cp*Fe(η4‐P5CH2SiMe3)]? and [Cp*Fe(η4‐P5NMe2)]?, respectively, are formed. The reaction of 1 with NaNH2 leads to the formation of the trianionic compound [{Cp*Fe(η4‐P5)}2N]3?, whereas the reaction with LiPH2 yields [Cp*Fe(η4‐P5PH2)]? as the main product, with {[Cp*Fe(η4‐P5)]2PH}2? as a byproduct. The calculated energy profile of the reactions provides a rationale for the formation of the different products.  相似文献   

5.
A series of molecular group 2 polyphosphides has been synthesized by using air-stable [Cp*Fe(η5-P5)] (Cp*=C5Me5) or white phosphorus as polyphosphorus precursors. Different types of group 2 reagents such as organo-magnesium, mono-valent magnesium, and molecular calcium hydride complexes have been investigated to activate these polyphosphorus sources. The organo-magnesium complex [(DippBDI−Mg(CH3))2] (DippBDI={[2,6-iPr2C6H3NCMe]2CH}) reacts with [Cp*Fe(η5-P5)] to give an unprecedented Mg/Fe-supramolecular wheel. Kinetically controlled activation of [Cp*Fe(η5-P5)] by different mono-valent magnesium complexes allowed the isolation of Mg-coordinated formally mono- and di-reduced products of [Cp*Fe(η5-P5)]. To obtain the first examples of molecular calcium-polyphosphides, a molecular calcium hydride complex was used to reduce the aromatic cyclo-P5 ring of [Cp*Fe(η5-P5)]. The Ca-Fe-polyphosphide is also characterized by quantum chemical calculations and compared with the corresponding Mg complex. Moreover, a calcium coordinated Zintl ion (P7)3− was obtained by molecular calcium hydride mediated P4 reduction.  相似文献   

6.
The synthesis and characterization of the first supramolecular aggregates incorporating the organometallic cyclo‐P3 ligand complexes [CpRMo(CO)23‐P3)] (CpR=Cp (C5H5; 1a ), Cp* (C5(CH3)5; 1b )) as linking units is described. The reaction of the Cp derivative 1a with AgX (X=CF3SO3, Al{OC(CF3)3}4) yields the one‐dimensional (1D) coordination polymers [Ag{CpMo(CO)2(μ,η311‐P3)}2]n[Al{OC(CF3)3}4]n ( 2 ) and [Ag{CpMo(CO)2(μ,η311‐P3)}3]n[X]n (X=CF3SO3 ( 3a ), Al{OC(CF3)3}4 ( 3b )). The solid‐state structures of these polymers were revealed by X‐ray crystallography and shown to comprise polycationic chains well‐separated from the weakly coordinating anions. If AgCF3SO3 is used, polymer 3a is obtained regardless of reactant stoichiometry whereas in the case of Ag[Al{OC(CF3)3}4], reactant stoichiometry plays a decisive role in determining the structure and composition of the resulting product. Moreover, polymers 3a, b are the first examples of homoleptic silver complexes in which AgI centers are found octahedrally coordinated to six phosphorus atoms. The Cp* derivative 1b reacts with Ag[Al{OC(CF3)3}4] to yield the 1D polymer [Ag{Cp*Mo(CO)2(μ,η321‐P3)}2]n[Al{OC(CF3)3}4]n ( 4 ), the crystal structure of which differs from that of polymer 2 in the coordination mode of the cyclo‐P3 ligands: in 2 , the Ag+ cations are bridged by the cyclo‐P3 ligands in a η11 (edge bridging) fashion whereas in 4 , they are bridged exclusively in a η21 mode (face bridging). Thus, one third of the phosphorus atoms in 2 are not coordinated to silver while in 4 , all phosphorus atoms are engaged in coordination with silver. Comprehensive spectroscopic and analytical measurements revealed that the polymers 2 , 3a , b , and 4 depolymerize extensively upon dissolution and display dynamic behavior in solution, as evidenced in particular by variable temperature 31P NMR spectroscopy. Solid‐state 31P magic angle spinning (MAS) NMR measurements, performed on the polymers 2 , 3b , and 4 , demonstrated that the polymers 2 and 3b also display dynamic behavior in the solid state at room temperature. The X‐ray crystallographic characterisation of 1b is also reported.  相似文献   

7.
The N‐heterocyclic carbene (NHC) adducts Zn(CpR)2(NHC)] (CpR=C5HMe4, C5H4SiMe3; NHC=ItBu, IDipp (Dipp=2,6‐diisopropylphenyl), IMes (Mes=mesityl), SIMes) were prepared and shown to be active catalysts for the hydrogenation of imines, whereas decamethylzincocene [ZnCp*2] is highly active for the hydrogenation of ketones in the presence of noncoordinating NHCs. The abnormal carbene complex [Zn(OCHPh2)2(aItBu)]2 was formed from spontaneous rearrangement of the ItBu ligand during incomplete hydrogenation of benzophenone. Two isolated ZnI adducts [Zn2Cp*2(NHC)] (NHC=ItBu, SIMes) are presented and characterized as weak adducts on the basis of 13C NMR spectroscopic and X‐ray diffraction experiments. A mechanistic proposal for the reduction of [ZnCp*2] with H2 to give [Zn2Cp*2] is discussed.  相似文献   

8.
The bis(amidodimethyl)disiloxane antimony chlorides Sb(NONR)Cl (NONR=[O(SiMe2NR)2]2−; R=tBu, Ph, 2,6-Me2C6H3=Dmp, 2,6-iPr2C6H3=Dipp, 2,6-(CHPh2)2-4-tBuC6H2=tBu-Bhp) are reduced to SbII and SbI species by using MgI reagents, [Mg(BDIR′)]2 (BDI=[HC{C(Me)NR′}2]; R′=2,4,6-Me3C6H2=Mes, Dipp). Stoichiometric reactions with Sb(NONR)Cl (R=tBu, Ph) form dimeric SbII stibanes [Sb(NONR)]2, shown crystallographically to contain Sb−Sb single bonds. The analogous distibane with R=Dmp substituents has an exceptionally long Sb−Sb interaction and exhibits spectroscopic and reactivity properties consistent with radical character in solution. When R=Dipp, reductions with MgI reagents directly give distibenes [Sb(μ-NONDipp)Mg(BDIR′)(THF)n]2 (R′=Mes, n=1; R′=Dipp, n=0). Crystallographic analysis shows a trans-substitution of the Sb=Sb double bond, with bridging NONDipp-ligands between the SbI and MgII centres. An attempt to access the NONPh-analogue using the same protocol afforded the polystibide cluster Sb8[μ4,η2:2:2:2-Mg(BDIMes)]4, which co-crystallized with the ligand transfer product, [Mg(BDIMes)]2(μ-NONPh).  相似文献   

9.
Reduction of [Cp*Fe(η5‐As5)] with [Cp′′2Sm(thf)] (Cp′′=η5‐1,3‐(tBu)2C5H3) under various conditions led to [(Cp′′2Sm)(μ,η44‐As4)(Cp*Fe)] and [(Cp′′2Sm)2As7(Cp*Fe)]. Both compounds are the first polyarsenides of the rare‐earth metals. [(Cp′′2Sm)(μ,η44‐As4)(Cp*Fe)] is also the first d/f‐triple decker sandwich complex with a purely inorganic planar middle deck. The central As42? unit is isolobal with the 6π‐aromatic cyclobutadiene dianion (CH)42?. [(Cp′′2Sm)2As7(Cp*Fe)] contains an As73? cage, which has a norbornadiene‐like structure with two short As?As bonds in the scaffold. DFT calculations confirm all the structural observations. The As?As bond order inside the cyclo As4 ligand in [(Cp′′2Sm)(μ,η44‐As4)(Cp*Fe)] was estimated to be in between an As?As single bond and a formally aromatic As42? system.  相似文献   

10.
Reactions of Cu+ containing the weakly coordinating anion [Al{OC(CF3)3}4]? with the polyphosphorus complexes [{CpMo(CO)2}2(μ,η22‐P2)] ( A ), [CpM(CO)23‐P3)] (M=Cr( B1 ), Mo ( B2 )), and [Cp*Fe(η5‐P5)] ( C ) are presented. The X‐ray structures of the products revealed mononuclear ( 4 ) and dinuclear ( 1 , 2 , 3 ) CuI complexes, as well as the one‐dimensional coordination polymer ( 5 a ) containing an unprecedented [Cu2( C )3]2+ paddle‐wheel building block. All products are readily soluble in CH2Cl2 and exhibit fast dynamic coordination behavior in solution indicated by variable temperature 31P{1H} NMR spectroscopy.  相似文献   

11.
The redox chemistry of [Cp*Fe(η5-As5)] ( 1 , Cp*=η5-C5Me5) has been investigated by cyclic voltammetry, revealing a redox behavior similar to that of its lighter congener [Cp*Fe(η5-P5)]. However, the subsequent chemical reduction of 1 by KH led to the formation of a mixture of novel Asn scaffolds with n up to 18 that are stabilized only by [Cp*Fe] fragments. These include the arsenic-poor triple-decker complex [K(dme)2][{Cp*Fe(μ,η2:2-As2)}2] ( 2 ) and the arsenic-rich complexes [K(dme)3]2[(Cp*Fe)2(μ,η4:4-As10)] ( 3 ), [K(dme)2]2[(Cp*Fe)2(μ,η2:2:2:2-As14)] ( 4 ), and [K(dme)3]2[(Cp*Fe)444:3:3:2:2:1:1-As18)] ( 5 ). Compound 4 and the polyarsenide complex 5 are the largest anionic Asn ligand complexes reported thus far. Complexes 2 – 5 were characterized by single-crystal X-ray diffraction, 1H NMR spectroscopy, EPR spectroscopy ( 2 ), and mass spectrometry. Furthermore, DFT calculations showed that the intermediate [Cp*Fe(η5-As5)], which is presumably formed first, undergoes fast dimerization to the dianion [(Cp*Fe)2(μ,η4:4-As10)]2−.  相似文献   

12.
The reaction of the phosphinidene complex [Cp*P{W(CO)5}2] ( 1 a ) (Cp*=C5Me5) with the anionic cyclo-Pn ligand complex [(η3-P3)Nb(ODipp)3] ( 2 , Dipp=2,6-diisopropylphenyl) resulted in the formation of [{W(CO)5}233:1:1-P4Cp*}Nb(ODipp)3] ( 3 ), which represents an unprecedented example of a ring expansion of a polyphosphorus-ligand complex initiated by a phosphinidene complex. Furthermore, the reaction of the pnictinidene complexes [Cp*E{W(CO)5}2] (E=P: 1 a , As: 1 b ) with the neutral complex [Cp′′′Co(η4-P4)] (Cp′′′=1,2,4-tBu3C5H2) led to a cyclo-P4E ring (E=P, As) through the insertion of the pentel atom into the cyclo-P4 ligand. Starting from 1 a , the two isomers [Cp′′′Co(μ34:1:1-P5Cp*){W(CO)5}2] ( 5 a , b ), and from 1 b , the three isomers [Cp′′′Co(μ34:1:1-AsP4Cp*){W(CO)5}2] ( 6 a – c ) with unprecedented cyclo-P4E ligands (E=P, As) were isolated. The complexes 6 a – c represent unique examples of ring expansions which lead to new mixed five-membered cyclo-P4As ligands. The possible reaction pathways for the formation of 5 a , b and 6 a – c were investigated by a combination of temperature-dependent 31P{1H} NMR studies and DFT calculations.  相似文献   

13.
According to spectroscopic (NMR, IR, UV/Vis) study, the interaction of pentaphosphaferrocene [Cp*Fe(η5‐P5)] with trimeric copper pyrazolate [(Cu{3,5‐(CF3)2Pz})3] yields a new compound that is astonishingly stable in solution. Single‐crystal X‐ray analysis reveals unprecedented structural changes in the interacting molecules and the unique type of coordination [Cp*Fe(μ3‐η522‐P5){Cu(3,5‐(CF3)2Pz)}3]. As a result of the 90° macrocycle folding, the copper atoms are able to behave both as a Lewis acid and as a Lewis base in the interaction with the cyclo‐P5 ligand.  相似文献   

14.
By applying the proper stoichiometry of 1:2 to [CpRFe(η5‐P5)] and CuX (X=Cl, Br) and dilution conditions in mixtures of CH3CN and solvents like CH2Cl2, 1,2‐Cl2C6H4, toluene, and THF, nine spherical giant molecules having the simplified general formula [CpRFe(η5‐P5)]@[{CpRFe(η5‐P5)}12{CuX}25(CH3CN)10] (CpR5‐C5Me5 (Cp*); η5‐C5Me4Et (CpEt); X=Cl, Br) have been synthesized and structurally characterized. The products consist of 90‐vertex frameworks consisting of non‐carbon atoms and forming fullerene‐like structural motifs. Besides the mostly neutral products, some charged derivatives have been isolated. These spherical giant molecules show an outer diameter of 2.24 (X=Cl) to 2.26 nm (X=Br) and have inner cavities of 1.28 (X=Cl) and 1.20 nm (X=Br) in size. In most instances the inner voids of these nanoballs encapsulate one molecule of [Cp*Fe(η5‐P5)], which reveals preferred orientations of π–π stacking between the cyclo‐P5 rings of the guest and those of the host molecules. Moreover, π–π and σ–π interactions are also found in the packing motifs of the balls in the crystal lattice. Electrochemical investigations of these soluble molecules reveal one irreversible multi‐electron oxidation at Ep=0.615 V and two reduction steps (?1.10 and ?2.0 V), the first of which corresponds to about 12 electrons. Density functional calculations reveal that during oxidation and reduction the electrons are withdrawn or added to the surface of the spherical nanomolecules, and no Cu2+ species are involved.  相似文献   

15.
Reaction of (TBBP)AlMe ? THF with [Cp*2Zr(Me)OH] gave [(TBBP)Al(THF)?O?Zr(Me)Cp*2] (TBBP=3,3’,5,5’‐tetra‐tBu‐2,2'‐biphenolato). Reaction of [DIPPnacnacAl(Me)?O?Zr(Me)Cp2] with [PhMe2NH]+[B(C6F5)4]? gave a cationic Al/Zr complex that could be structurally characterized as its THF adduct [(DIPPnacnac)Al(Me)?O?Zr(THF)Cp2]+[B(C6F5)4]? (DIPPnacnac=HC[(Me)C=N(2,6‐iPr2?C6H3)]2). The first complex polymerizes ethene in the presence of an alkylaluminum scavenger but in the absence of methylalumoxane (MAO). The adduct cation is inactive under these conditions. Theoretical calculations show very high energy barriers (ΔG=40–47 kcal mol?1) for ethene insertion with a bridged AlOZr catalyst. This is due to an unfavorable six‐membered‐ring transition state, in which the methyl group bridges the metal and ethene with an obtuse metal‐Me‐C angle that prevents synchronized bond‐breaking and making. A more‐likely pathway is dissociation of the Al‐O‐Zr complex into an aluminate and the active polymerization catalyst [Cp*2ZrMe]+.  相似文献   

16.
Relative to other cyclic poly‐phosphorus species (that is, cyclo‐Pn), the planar cyclo‐P4 group is unique in its requirement of two additional electrons to achieve aromaticity. These electrons are supplied from one or more metal centers. However, the degree of charge transfer is dependent on the nature of the metal fragment. Unique examples of dianionic mononuclear η4‐P4 complexes are presented that can be viewed as the simple coordination of the [cyclo‐P4]2? dianion to a neutral metal fragment. Treatment of the neutral, molybdenum cyclo‐P4 complexes Mo(η4‐P4)I2(CO)(CNArDipp2)2 and Mo(η4‐P4)(CO)2(CNArDipp2)2 with KC8 produces the dianionic, three‐legged piano stool complexes, [Mo(η4‐P4)(CO)(CNArDipp2)2]2? and [Mo(η4‐P4)(CO)2(CNArDipp2)]2?, respectively. Structural, spectroscopic, and computational studies reveal a similarity to the classic η6‐benzene complex (η6‐C6H6)Mo(CO)3 regarding the metal‐center valence state and electronic population of the planar‐cyclic ligand π system.  相似文献   

17.
Die Reaktion von [Cp′′′Co(η4‐P4)] ( 1 ) (Cp′′′=1,2,4‐tBu3C5H2) mit MeNHC (MeNHC=1,3,4,5‐tetramethylimidazol‐2‐ylidene) führt über eine NHC‐induzierte Phosphorkationen‐Abstraktion zum Ringkontraktionsprodukt [(MeNHC)2P][Cp′′′Co(η3‐P3)] ( 2 ), welches das erste Beispiel eines anionischen CoP3‐Komplexes repräsentiert. Solche von NHCs induzierten Ringkontraktionsreaktionen lassen sich ebenfalls auf Tripeldecker‐Sandwich‐Komplexe anwenden. So werden die Komplexe [(Cp*Mo)2(μ,η6:6‐E6)] ( 3 a , 3 b ) (Cp*=C5Me5; E=P, As) zu den Komplexen [(MeNHC)2E][(Cp*M)2(μ,η3:3‐E3)(μ,η2:2‐E2)] ( 4 a , 4 b ) transformiert, wobei 4 b das erste strukturell charakterisierte Beispiel eines NHC‐substituierten AsI‐Kations darstellt. Darüber hinaus führt die Reaktion des Vanadium‐Komplexes [(Cp*V)2(μ,η6:6‐P6)] ( 5 ) mit MeNHC zur Bildung der neuartigen Komplexe [(MeNHC)2P][(Cp*V)2(μ,η6:6‐P6)] ( 6 ), [(MeNHC)2P][(Cp*V)2(μ,η5:5‐P5)] ( 7 ) bzw. [(Cp*V)2(μ,η3:3‐P3)(μ,η1:1‐P{MeNHC})] ( 8 ).  相似文献   

18.
The reaction of [Cp′′′Co(η4‐P4)] ( 1 ) (Cp′′′=1,2,4‐tBu3C5H2) with MeNHC (MeNHC=1,3,4,5‐tetramethylimidazol‐2‐ylidene) leads through NHC‐induced phosphorus cation abstraction to the ring contraction product [(MeNHC)2P][Cp′′′Co(η3‐P3)] ( 2 ), which represents the first example of an anionic CoP3 complex. Such NHC‐induced ring contraction reactions are also applicable for triple‐decker sandwich complexes. The complexes [(Cp*Mo)2(μ,η6:6‐E6)] ( 3 a , 3 b ) (Cp*=C5Me5; E=P, As) can be transformed to the complexes [(MeNHC)2E][(Cp*M)2(μ,η3:3‐E3)(μ,η2:2‐E2)] ( 4 a , 4 b ), with 4 b representing the first structurally characterized example of an NHC‐substituted AsI cation. Further, the reaction of the vanadium complex [(Cp*V)2(μ,η6:6‐P6)] ( 5 ) with MeNHC results in the formation of the unprecedented complexes [(MeNHC)2P][(Cp*V)2(μ,η6:6‐P6)] ( 6 ), [(MeNHC)2P][(Cp*V)2(μ,η5:5‐P5)] ( 7 ) and [(Cp*V)2(μ,η3:3‐P3)(μ,η1:1‐P{MeNHC})] ( 8 ).  相似文献   

19.
Niobium and Tantalum Complexes with P2 and P4 Ligands The photolysis of [Cp″Ta(CO)4] 1 (Cp″ = C5H3tBu2?1,3) and P4 affords Cp″(CO)2Ta(η4?P4) 2 , [{Cp″(CO)Ta}2(m??η2:2?P2)2] 3 and [Cp3″(CO)3Ta3(P2)2] 4 . In a photochemical reaction 2 and [Cp*Nb(CO)4] 5 form [{Cp*(CO)Nb}{Cp″(CO)Ta}(m??η2:2?P2)2] 6 and [{Cp*(CO)2Nb} {Cp*Nb}{Cp″(CO)Ta}(m?32:1:1?P2)2] 7 , a compound with the novel m?32:2:1?P2-coordination mode. The reaction of 2 and [Cp*Co(C2H4)2] 8 leads to [{Cp*Co} {Cp″(CO)Ta}(m??η2:2?P2)2] 9 , a heteronuclear complex with an ?early”? and a ?late”? transition metal. Complexes 2, 3, 7 and 9 have been further characterized by X-ray structure analyses.  相似文献   

20.
By the reaction of [Cp*Fe(η5-As5)] ( I ) (Cp*=C5Me5) with main group nucleophiles, unique functionalized products with η4-coordinated polyarsenide (Asn) units (n=5, 6, 20) are obtained. With carbon-based nucleophiles such as MeLi or KBn (Bn=CH2Ph), the anionic organo-substituted polyarsenide complexes, [Li(2.2.2-cryptand)][Cp*Fe(η4-As5Me)] ( 1 a ) and [K(2.2.2-cryptand)][Cp*Fe{η4-As5(CH2Ph)}] ( 1 b ), are accessible. The use of KAsPh2 leads to a selective and controlled extension of the As5 unit and the formation of the monoanionic compound [K(2.2.2-cryptand][Cp*Fe(η4-As6Ph2)] ( 2 ). When I is reacted with [M]As(SiMe3)2 (M=Li ⋅ THF; K), the formation of the largest known anionic polyarsenide unit in [M′(2.2.2-cryptand)]2[(Cp*Fe)45443311-As20}] ( 3 ) occurred (M′=Li ( 3 a ), K ( 3 b )).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号