首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Rolf Huisgen explored the Diels–Alder reactions of 1,3,5-cycloheptatriene (CHT) and cyclooctatetraene (COT) with the dienophiles maleic anhydride and 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) to determine the kinetics and mechanisms of various electrocyclizations and Diels–Alder reactions. These reactions have been examined with density functional theory. Modern computational chemistry has provided information not previously available by experiment. Transition states for all the reactions have been identified, and their Gibbs energies are used to explain the experimental reactivities. Zwitterionic intermediates were not found in the [4+2] cycloadditions of both CHT or COT with PTAD and are thus not involved in these reactions. [2+2+2] cycloadditions, as an alternative path to the Diels–Alder products, are highly disfavored. Rapid double nitrogen inversion was found for the cycloaddition products with PTAD.  相似文献   

2.
We report the late-stage chemical modification of ribosomally synthesized and post-translationally modified peptides (RIPPs) by Diels–Alder cycloadditions to naturally occurring dehydroalanines. The tail region of the thiopeptide thiostrepton could be modified selectively and efficiently under microwave heating and transition-metal-free conditions. The Diels–Alder adducts were isolated and the different site- and endo/exo isomers were identified by 1D/2D 1H NMR. Via efficient modification of the thiopeptide nosiheptide and the lanthipeptide nisin Z the generality of the method was established. Minimum inhibitory concentration (MIC) assays of the purified thiostrepton Diels–Alder products against thiostrepton-susceptible strains displayed high activities comparable to that of native thiostrepton. These Diels–Alder products were also subjected successfully to inverse-electron-demand Diels–Alder reactions with a variety of functionalized tetrazines, demonstrating the utility of this method for labeling of RiPPs.  相似文献   

3.
Pressure‐induced polymerization (PIP) of aromatics is a novel method for constructing sp3‐carbon frameworks, and nanothreads with diamond‐like structures were synthesized by compressing benzene and its derivatives. Here by compressing a benzene‐hexafluorobenzene cocrystal (CHCF), H‐F‐substituted graphane with a layered structure in the PIP product was identified. Based on the crystal structure determined from the in situ neutron diffraction and the intermediate products identified by gas chromatography‐mass spectrum, we found that at 20 GPa CHCF forms tilted columns with benzene and hexafluorobenzene stacked alternatively, and leads to a [4+2] polymer, which then transforms to short‐range ordered H‐F‐substituted graphane. The reaction process involves [4+2] Diels–Alder, retro‐Diels–Alder, and 1‐1′ coupling reactions, and the former is the key reaction in the PIP. These studies confirm the elemental reactions of PIP of CHCF for the first time, and provide insight into the PIP of aromatics.  相似文献   

4.
Diels–Alder reactions employing 1,2‐azaborine heterocycles as 1,3‐dienes are reported. Carbocyclic compounds with high stereochemical and functional complexity are produced, as exemplified by the straightforward two‐step synthesis of an amino allyl boronic ester bearing four contiguous stereocenters as a single diastereomer. Whereas electron‐deficient dienophiles undergo irreversible Diels–Alder reactions, a reversible Diels–Alder reaction with the less electron‐deficient methyl acrylate is observed. Both the N and the B substituent of the 1,2‐azaborine exert significant influence on the [4+2] cycloaddition reactivity as well as the aromatic character of the heterocycle. The experimentally determined thermodynamic parameters of the reversible Diels–Alder reaction between 1,2‐azaborines and methyl acrylate correlate with aromaticity trends and place 1,2‐azaborines approximately between furan and thiophene on the aromaticity scale.  相似文献   

5.
Among concerted cycloadditions, the Diels–Alder reaction is the grand old classic, which is usually achieved with acid catalysis. In this report, hydroxypyrones, oxa‐, and thiazolones are explored because they provide access to anionic dienes. Their [4+2] cycloaddition with cyclic and acyclic dienophiles, such as maleimides and fumarates, affords bicyclic products with four new stereogenic centers. Bifunctional anion–π catalysts composed of amine bases next to the π surface of naphthalenediimides (NDIs) are shown to selectively stabilize the “open”, fully accessible anionic exo transition state on the π‐acidic aromatic surface. Our results also include reactivities that are hard to access with conventional organocatalysts, such as the exo ‐specific and highly enantioselective Diels–Alder reaction of thiazolones and maleimides with complete suppression of the otherwise dominant Michael addition. With increasing π acidity of the anion–π catalysts, the rates, chemo‐, diastereo‐, and enantioselectivities increase consistently.  相似文献   

6.
The hetero‐Diels–Alder reaction is one of the most powerful transformations in the chemistry toolbox for the synthesis of aza‐ and oxa‐heterocycles embodying multiple stereogenic centers. However, as compared to other cycloadditions, in particular the dipolar cycloadditions and the Diels–Alder reaction, the hetero‐Diels–Alder reaction has been much less explored and exploited in organic synthesis. Nevertheless, this powerful transformation has opened up efficient and creative routes to biologically relevant small molecules and different natural products which contain six‐membered oxygen or nitrogen ring systems. Recent developments in this field, in particular in the establishment of enantioselectively catalyzed hetero‐Diels–Alder cycloadditions steered by a plethora of different catalysts and the application of the resulting small molecules in chemical biology and medicinal chemistry research, are highlighted in this Minireview.  相似文献   

7.
Although the Diels–Alder reaction has long been utilized for the preparation of numerous heterocycles, opportunities to extend its power remain. Herein, we detail a simple, modular, and robust approach that combines various amines regioselectively with 4,6‐dichloropyrone to create substrates which, under appropriate conditions, can directly deliver varied indolines and hydroindolines through [4+2] cycloadditions with substitution patterns difficult to access otherwise. As an initial demonstration of the power of the strategy, several different natural products have been obtained either formally or by direct total synthesis, with efforts toward one of these—the complex amaryllidaceae alkaloid gracilamine—affording the shortest route to date in terms of linear step count.  相似文献   

8.
Although the Diels–Alder reaction has long been utilized for the preparation of numerous heterocycles, opportunities to extend its power remain. Herein, we detail a simple, modular, and robust approach that combines various amines regioselectively with 4,6‐dichloropyrone to create substrates which, under appropriate conditions, can directly deliver varied indolines and hydroindolines through [4+2] cycloadditions with substitution patterns difficult to access otherwise. As an initial demonstration of the power of the strategy, several different natural products have been obtained either formally or by direct total synthesis, with efforts toward one of these—the complex amaryllidaceae alkaloid gracilamine—affording the shortest route to date in terms of linear step count.  相似文献   

9.
The distortion/interaction or activation strain model (ASM) of chemical reactivity is examined in real space through the interacting quantum atoms (IQA) approach. Attention is paid to the role that the geometrically constrained ASM structures of the fragments play in the chemical interpretation of the driving forces that lead to a given reaction channel. These fictitious intermediate states are necessary in the ASM, but IQA may or may not use them at will. Similarities and differences are highlighted by studying the endo/exo preference rules of simple [4+2] Diels–Alder cycloadditions. Although overall the agreement is reasonable, we warn about a blind use of the plain ASM if no further energy decomposition analyses of its interaction energy are done.  相似文献   

10.
The reaction of 4,6‐dinitrobenzofuroxan (DNBF) with 1‐trimethylsilyloxybuta‐1,3‐diene ( 8 ) is shown to afford a mixture of [2+4] diastereomeric cycloadducts ( 10 , 11 ) through stepwise addition–cyclization pathways. Zwitterionic intermediate σ‐adduct 9 , which is involved in the processes, has been successfully characterized by 1H and 13C NMR spectroscopy and UV/visible spectrophotometry in acetonitrile. A kinetic study has been carried out in this solvent that revealed that the rate of formation of 9 nicely fits the three‐parameter equation log k=s(E+N) developed by Mayr to describe the feasibility of nucleophile–electrophile combinations. This significantly adds to the NMR spectroscopic evidence that the overall cycloadditions take place through a stepwise mechanism. The reaction has also been studied in dichloromethane and toluene. In these less polar solvents, the stability of 9 is not sufficient to allow direct characterization by spectroscopic methods, but a kinetic investigation supports the view that stepwise processes are still operating. An informative comparison of our reaction with previous interactions firmly identified as prototype stepwise cycloadditions is made on the basis of the global electrophilicity index, ω, defined by Parr within the density functional theory, and highlighted by Domingo et al. as a powerful tool for understanding Diels–Alder reactions.  相似文献   

11.
We report the combination of transition‐metal‐catalyzed diversified cycloisomerization of 1,6‐enynes with chiral Lewis acid promoted asymmetric Diels–Alder reaction to realize asymmetric cycloisomerization/Diels–Alder relay reactions of 1,6‐enynes with electron‐deficient alkenes. A broad spectrum of chiral [5,6]‐bicyclic products could be acquired in high yields (up to 99 %) with excellent diastereoselectivy (>19:1 dr) and enantioselectivity (up to 99 % ee).  相似文献   

12.
A detailed examination of [4+2] cycloaddition reactions between 1,8‐disubstituted cyclooctatetraenes and diazo compounds revealed that 4‐phenyl‐1,2,4‐triazole‐3,5‐dione (PTAD) reacts to form either 2,3‐ or 3,4‐disubstituted adducts. The product distribution can be controlled by modulating the electron density of the cyclooctatetraene. Unprecedented [4+2] cycloadditions between diisopropyl azodicarboxylate (DIAD) and 1,8‐disubstituted cyclooctatetraenes are also described and further manipulation of a resulting cycloadduct uncovered a new pathway to the synthetically challenging bicyclo[4.2.0]octa‐2,4‐diene family. Variation of the substituents resulted in a range of compounds displaying selective action against different human tumour cell types.  相似文献   

13.
An efficient and short entry to polyfunctionalized linear triquinanes from 2‐methoxyphenols is described by utilizing the following chemistry. The Diels–Alder reactions of masked o‐benzoquinones, derived from 2‐methoxyphenols, with cyclopentadiene afford tricyclo[5.2.2.02,6]undeca‐4,10‐dien‐8‐ones. Photochemical oxa‐di‐π‐methane (ODPM) rearrangements and 1,3‐acyl shifts of the Diels–Alder adducts are investigated. The ODPM‐rearranged products are further converted to linear triquinanes by using an O‐stannyl ketyl fragmentation. Application of this efficient strategy to the total synthesis of (±)‐Δ9(12)‐capnellene was accomplished from 2‐methoxy‐4‐methylphenol in nine steps with 20 % overall yield.  相似文献   

14.
A bioinsipred gold‐catalyzed tandem Diels–Alder/Diels–Alder reaction of an enynal and a 1,3‐diene, forming the highly‐strained benzotricyclo[3.2.1.02,7]octane skeleton, was reported. In contrast, a Diels–Alder/Friedel–Crafts tandem reaction occurred instead when silver salts were used as the catalyst. Although both reactions experienced the similar Diels–Alder reaction of a pyrylium intermediate with a 1,3‐diene, they have different reaction mechanisms. The former proceeded with a stepwise Diels–Alder reaction, while the latter one with a concerted one.  相似文献   

15.
The cycloadditions of (E)‐3‐diazenylbut‐2‐enes 1 with a variety of alkenes 2 – 6 were carried out in water as well as in organic solvents. The reactions were always faster in heterogeneous aqueous medium than in the organic solvents. These conjugated diazenyl‐alkenes behave mainly as heterodienes, and the Diels‐Alder adducts are the sole or at least main reaction products. Pyrroles derived from zwitterionic [3+2] cycloaddition reactions were observed in some cases. The cycloaddition of 1a with (+)‐2‐(ethenyloxy)‐3,7,7‐trimethylbicyclo[4.1.0]heptane ( 5 ) is the first example of an asymmetric `inverse electron‐demand' Diels‐Alder reaction carried out in pure water.  相似文献   

16.
We have studied the solvent, temperature, and pressure influences on the reaction rates of cyclic and acyclic N=N bonds in the Diels–Alder and ene reactions. The transfer from N‐phenylmaleimide ( 9 ) to a structural analogue, 4‐phenyl‐1,2,4‐triazoline‐3,5‐dione ( 2 ), is accompanied by the rate increase in five to six orders of magnitude in the Diels–Alder reactions with cyclopentadiene ( 4 ) and 9,10‐dimethylanthracene ( 5 ), whereas the transfer from dimethyl fumarate ( 10 ) to diethyl azodicarboxylate ( 1 ) increases only in one to two orders of magnitude. The ratio of the reaction rate constants ( 2 + 4 )/( 1 + 4 ) is very large (5.2 × 107) and almost the same (5.3 × 107) as in the ene reactions with tetramethylethylene ( 7 ), ( 2 + 7 )/( 1 + 7 ). It has been observed that the N=N bond in reagent 2 has strong electrophilic, and its N–N moiety in the transition state has nucleophilic properties, which results from the analysis of the solvation enthalpy transfer of reagents, activated complex, and adduct in the Diels–Alder reaction of 2 with anthracene 22 .  相似文献   

17.
The reactivity of alkynyl and enynyl Fischer carbene complexes towards 8‐azaheptafulvenes is examined. Alkynyl carbenes 1 a – f undergo regioselective [8+2] heterocyclization with 8‐aryl‐8‐azaheptafulvenes 2 a , b providing cycloheptapyrroles 3 and 4 with metal carbene or ester functionality at C3. Moreover, consecutive cyclization reactions are involved when enynyl carbenes are used. Thus, the cyclopenta[b]pyrrole framework 7 is formed by the consecutive [8+2] cyclization and cyclopentannulation reactions. The initially formed cyclopentannulation adduct can be intercepted through a Diels–Alder reaction with classic dienophiles to afford increasing structural complexity (compounds 8 and 9 ). More importantly, the construction of the indole skeleton is accomplished with a high degree of substitution and functionalization (compounds 11 – 15 ) by a one‐pot sequence that involves [8+2] cyclization, R? NC or CO insertion, and ring closure.  相似文献   

18.
Diels–Alder cycloadditions of butadiene and 1,3‐dipolar cycloadditions of azomethine ylide, fulminic acid, and the parent nitrone to polyacenes, fullerenes, and nanotubes have been investigated with density functional theory and ONIOM methods. Activation barriers obtained for cycloaddition reactions on planar and curved systems have been shown to be highly correlated to the energy needed to distort the reactants to the geometry of the transition state (TS).  相似文献   

19.
The reaction of N‐phthaloyl‐L ‐leucine acid chloride (1) with isoeugenol (2) was carried out in chloroform, and novel optically active isoeugenol ester derivative 3 as a chiral monomer was obtained in high yield. Compound 3 was characterized by 1H‐NMR, IR, and mass and elemental analysis and then was used for the preparation of model compound 5 and polymerization reactions. 4‐Phenyl‐1,2,4‐triazoline‐3,5‐dione, PhTD (4), was allowed to react with compound 3. The reaction is very fast and gives only one diastereomer of 5 via Diels–Alder and ene pathways in quantitative yield. In order to explain this diastereoselectivity, a nonconcerted two‐step mechanism involving benzylic cation (BC) and aziridinium (AI) have been proposed for the Diels–Alder and ene reactions, respectively. The polymerization reactions of novel monomer 3 with bis(triazolinedione)s [bis(p‐3,5‐dioxo‐1,2,4‐triazolin‐4‐ylphenyl)methane (8) and 1,6‐bis(3,5‐dioxo‐1,2,4‐triazolin‐4‐yl)hexane] (9)] were performed in N,N‐dimethylacetamide (DMAc) at room temperature. The reactions are exothermic, fast, and gave novel optically active polymers 10 and 11 via repetitive Diels–Alder–ene polyaddition reactions. These polymers have inherent viscosities in a range about 0.18–0.22 dL/g. Some physical properties and structural characterizations of these new polymers have been studied and are reported. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1211–1219, 1999  相似文献   

20.
Diels‐Alder reactions of tetracyclone with various dienophiles under solvent free conditions were studied. In the case of cyclic dienophiles that exhibit more steric hindrance, decarbonylation of [4+2] adducts were carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号