首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Gamma-ray (γ-ray) irradiation was introduced into zeolite synthesis. The crystallization process of zeolite NaA, NaY, Silicalite-1, and ZSM-5 were greatly accelerated. The crystallization time of NaA zeolite was significantly decreased to 18 h under γ-ray irradiation at 20 °C, while more than 102 h was needed for the conventional process. Unexpectedly, more mesopores were created during this process, and thus the adsorption capacity of CO2 increased by 6-fold compared to the NaA prepared without γ-ray irradiation. Solid experimental evidence and density function theory (DFT) calculations demonstrated that hydroxyl free radicals (OH*) generated by γ-rays accelerated the crystallization of zeolite NaA. Besides NaA, mesoporous ZSM-5 with MFI topology was also successfully synthesized under γ-ray irradiation, which possessed excellent catalytic performance for methanol conversion, suggesting the universality of this new synthetic strategy for various zeolites.  相似文献   

2.
A variety of phosphated zeolite H‐ZSM‐5 samples are investigated by using a combination of Fourier transfer infrared (FTIR) spectroscopy, single pulse 27Al, 29Si, 31P, 1H‐31P cross polarization (CP), 27Al‐31P CP, and 27Al 3Q magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, scanning transmission X‐ray microscopy (STXM) and N2 physisorption. This approach leads to insights into the physicochemical processes that take place during phosphatation. Direct phosphatation of H‐ZSM‐5 promotes zeolite aggregation, as phosphorus does not penetrate deep into the zeolite material and is mostly found on and close to the outer surface of the zeolite, acting as a glue. Phosphatation of pre‐steamed H‐ZSM‐5 gives rise to the formation of a crystalline tridymite AlPO4 phase, which is found in the mesopores of dealuminated H‐ZSM‐5. Framework aluminum species interacting with phosphorus are not affected by hydrothermal treatment. Dealuminated H‐ZSM‐5, containing AlPO4, retains relatively more framework Al atoms and acid sites during hydrothermal treatment than directly phosphated H‐ZSM‐5.  相似文献   

3.
The effects of TPAOH/SiO2, H2O/SiO2, SiO2/Na2O and SiO2/Al2O3 ratios in the initial synthetic mixture on the crystallization of nanoparticles of ZSM‐5 zeolite under atmospheric pressure were studied. A Taguchi orthogonal experimental design with three levels of the above‐mentioned parameters was used to optimize the experiment parameters by the analysis of variances (ANOVA). Applying the Taguchi method significantly reduced the time and cost for optimization. The obtained products were characterized by scanning electron microscopy, X‐ray diffraction and FT‐IR spectroscopy. As a result of the Taguchi analysis TPAOH/SiO2 followed by SiO2/Al2O3 was the most influencing parameters for the synthesis of nanosized ZSM‐5 crystals.  相似文献   

4.
Hierarchical ZSM‐5 zeolites with micro‐, meso‐ and macroporosity were prepared from diatomite zeolitization through a vapor‐phase transport process on solid surfaces. The aromatization performance of the catalysts was investigated on a fixed bed reactor by using FCC gasoline as feedstock. The crystal phase, morphology, pore structures, acidity and coke depositions of the hierarchical ZSM‐5 zeolites were characterized by means of X‐ray diffraction (XRD), scanning electron microscope (SEM), N2 adsorption/desorption, Fourier transform infrared (FT‐IR) and thermogravimetry‐mass spectrogram (TG‐MS), respectively. The results show that the prepared hierarchical ZSM‐5 zeolite possesses excellent porosity and high crystallinity, displaying an improved aromatization performance and carbon deposition resistance due to its meso‐ and macroporous structures.  相似文献   

5.
The nature behind the promotional effect of phosphorus on the catalytic performance and hydrothermal stability of zeolite H‐ZSM‐5 has been studied using a combination of 27Al and 31P MAS NMR spectroscopy, soft X‐ray absorption tomography and n‐hexane catalytic cracking, complemented with NH3 temperature‐programmed desorption and N2 physisorption. Phosphated H‐ZSM‐5 retains more acid sites and catalytic cracking activity after steam treatment than its non‐phosphated counterpart, while the selectivity towards propylene is improved. It was established that the stabilization effect is twofold. First, the local framework silico‐aluminophosphate (SAPO) interfaces, which form after phosphatation, are not affected by steam and hold aluminum atoms fixed in the zeolite lattice, preserving the pore structure of zeolite H‐ZSM‐5. Second, the four‐coordinate framework aluminum can be forced into a reversible sixfold coordination by phosphate. These species remain stationary in the framework under hydrothermal conditions as well. Removal of physically coordinated phosphate after steam‐treatment leads to an increase in the number of strong acid sites and increased catalytic activity. We propose that the improved selectivity towards propylene during catalytic cracking can be attributed to local SAPO interfaces located at channel intersections, where they act as impediments in the formation of bulky carbenium ions and therefore suppress the bimolecular cracking mechanism.  相似文献   

6.
陈磊  卢鹏  袁扬扬  徐力  张晓敏  许磊 《催化学报》2016,(8):1381-1388
分子筛结构的独特性和多样性使其在催化、吸附分离和离子交换等领域有着广泛应用.近年来,纳米分子筛制备和应用受到极大关注.与传统微米分子筛相比,纳米分子筛具有较小的晶粒尺寸、较大的外表面积和较高的表面活性,能显著提高其分离和催化性能.制备纳米晶体的常用方法有过量模板法、空间限定法、晶种法、离子热合成法及微反应器合成法等.目前,已合成出多种拓扑结构的纳米分子筛,包括 FAU, MFI, MEL和CHA等. ZSM-22是一种具有 TON拓扑结构的一维十元环直孔道分子筛(孔口尺寸为0.45 nm ×0.55 nm),在长链烷烃异构化和烯烃异构化等反应中表现出优异的催化活性.水热合成法是制备 ZSM-22分子筛最常用的方法,所得样品晶粒尺寸为2–15μm,但由于 ZSM-22分子筛是一种亚稳态结构,为了防止杂晶生成,合成通常是在剧烈搅拌(通常大于400 r/min)下进行.目前已有报道在较低转速下合成 ZSM-22分子筛,但产物仍为微米晶体;或在微波辅助水热合成条件下合成亚微米 ZSM-22分子筛,但晶体尺寸不可调且合成过程需要较高功率的微波反应器.因此,在水热条件下合成纯纳米 ZSM-22分子筛仍然是一个巨大挑战.本文在上述研究基础上采用改进的水热合成法成功合成出纳米 ZSM-22分子筛,考察了转速﹑硅铝比及乙醇共溶剂对晶粒尺寸的影响,比较了纳米和常规微米 ZSM-22分子筛的甲醇转化反应性能.结果表明,采用改进的水热合成法能够在较低转速下合成出纳米 ZSM-22分子筛,晶体尺寸在150–800 nm范围可调.通过考察转速对晶粒尺寸的影响,发现静态合成条件下无法形成 ZSM-22分子筛,表明 ZSM-22分子筛合成需要一定的转速.转速在10–50 r/min变化时,可以合成出不同晶体尺寸的 ZSM-22分子筛,且随转速提高, ZSM-22分子筛晶体尺寸先减小后增大,表明纳米 ZSM-22分子筛合成存在最佳转速.另外,配料硅铝比能显著影响 ZSM-22分子筛晶体尺寸,随配料硅铝比增加, ZSM-22分子筛晶体尺寸先减小后增大.通过在合成体系中添加乙醇作为共溶剂,考察了有机溶剂对 ZSM-22分子筛晶粒尺寸的影响,发现有机溶剂能显著增大 ZSM-22的晶体尺寸.将本文合成的纳米和常规微米 ZSM-22分子筛用于甲醇转化反应,考察了晶体尺寸对 ZSM-22分子筛甲醇转化反应性能的影响.发现与常规微米 ZSM-22分子筛相比,纳米 ZSM-22分子筛催化剂寿命显著提高,说明晶粒尺寸减小能有效减缓积碳导致的分子筛失活;同时,反应产物中乙烯和芳烃选择性有所提高,这是由于外表面积增大所致.此外,还考察了不同硅铝比 ZSM-22分子筛的甲醇转化反应性能.结果表明,分子筛硅铝比会影响催化剂寿命,但晶体尺寸对催化剂寿命影响更大. ZSM-22分子筛硅铝比增大有助于提高低碳烯烃选择性,减少芳烃生成.  相似文献   

7.
美国Mobil公司于1972年首先开发的ZSM-5分子筛是一种高硅三维交叉孔道的沸石分子筛,其孔道结构具有良好的择形作用,因此被广泛应用于芳构化、异构化、烷基化和催化裂化等工业催化过程.ZSM-5分子筛的催化性能与其晶粒尺寸、酸性及形貌等密切相关.改变合成方法和制备参数可以合成出不同形貌的ZSM-5分子筛,但目前关于ZSM-5分子筛形貌对其物理化学性质和催化性能的影响报道较少.本文通过改变模板剂类型,采用水热合成法,制备出了类雪花状、椭圆柱状和夹心糖状三种不同形貌的ZSM-5分子筛.通过X射线荧光光谱(XRF)、N_2物理吸脱附(BET)、扫描电镜(SEM)、X射线衍射(XRD)、固体核磁共振(MAS NMR)、NH_3程序升温脱附(NH_3-TPD)及吸附吡啶的红外光谱(Py-IR)等手段对不同形貌分子筛的物理化学性质、形貌、晶体骨架结构和酸性进行了表征.采用浸渍法制备了Ca/HZSM-5催化剂,以甲醇制烯烃(MTO)为探针反应、着重研究了ZSM-5分子筛形貌和晶体结构特性对其酸性和催化性能的影响.合成的三种不同形貌的ZSM-5分子筛具有相近的SiO_2/Al_2O_3比和比表面积.XRD结果表明,通过改变模板剂类型,可制得结晶度较好的ZSM-5分子筛,其中类雪花状分子筛的(101)晶面比例明显多于其它两种分子筛,而椭圆柱状分子筛则暴露更多的(020)晶面.~(27)Al MAS NMR结果表明,绝大部分Al都以四配位形式存在于三种分子筛骨架中,而类雪花状分子筛的峰强度较低,这是由于Al的配位环境不同(偶极作用弱),说明在类雪花状分子筛的交叉晶面中存在大量扭曲、错位和不对称结构;与其它两种分子筛相比,类雪花状分子筛的~(29)Si MAS NMR谱峰宽化、进一步证明该分子筛骨架结构中存在扭曲、错位和不对称性.NH_3-TPD结果表明,类雪花状HZSM-5分子筛的酸量明显高于其它两种分子筛,在SiO_2/Al_2O_3比相近的情况下、类雪花状HZSM-5分子筛晶体骨架结构的错位、扭曲和不对称性造成了该分子筛中酸量增加;但Py-IR结果表明,类雪花状HZSM-5分子筛的酸量低于其它两种分子筛,这与NH_3-TPD结果有差异,主要是由于类雪花状分子筛几何空间结构和晶界处的扭曲、错位对孔道结构的影响,不利于比NH_3分子大的吡啶分子的扩散,进而影响了吡啶分子在酸性位上的吸附.三种不同形貌的ZSM-5分子筛经Ca改性后比表面积和微孔比表面积均明显下降,其中类雪花状和椭圆柱状催化剂的微孔比表面积下降幅度较大,外比表面积下降幅度较小.这是因为各分子筛的晶体结构和晶面的取向差异,导致Ca离子在分子筛上的扩散行为不同.同时,经Ca改性后,三个催化剂的总酸量均有下降,尤其是类雪花状分子筛酸量下降较为明显,表明其中Ca离子更容易扩散到分子筛孔道内,与更多的酸性位作用,而夹心糖状分子筛表面具有更多的Z字形孔道,不利于Ca离子扩散到分子筛孔道内,因而酸量下降较少.Py-IR结果表明,Ca改性后催化剂的总酸量下降,尤其是B酸明显降低,L酸略有增加,其中类雪花状ZSM-5分子筛催化剂的B酸量最低.甲醇制烯烃反应评价结果表明,随着反应温度升高,三个催化剂的总烯选择性和丙烯选择性均呈先升高后降低的趋势.类雪花状ZSM-5分子筛催化剂在甲醇转化率相近时具有最高的烯烃选择性,在反应温度为460℃时,总烯烃选择性为72%,丙烯选择性达39%.  相似文献   

8.
The support substrates were modified with sol?Cgel-based silica coating as intermediate buffer layer followed by NaA zeolite seed (prepared hydrothermally at 85?°C for 3?h) coating with 2?wt% aqueous dispersion. The secondary crystallization of NaA zeolite in the silica-seed-coated supports was carried out hydrothermally through crystal growth process at 65?°C for 4 and 8?h (single-stage each), (6?+?4) and (6?+?6)?h (double-stage each), and (6?+?4?+?2) and (6?+?4?+?4)?h (triple-stage each). The crystallization behaviours of the prepared NaA membranes were studied by X-ray diffraction, and the microstructures of the same films were observed by field emission scanning electron microscope. The efficiency of the membranes was tested with gas permeation study. The double-stage secondary crystallization at 65?°C for (6?+?4)?h showed highly interlocked NaA grains in the membrane and it rendered the permeance values of 3.7?×?10?8?mol?m?2?s?1?Pa?1 and 15.9?×?10?8 for single gas, nitrogen (N2) and hydrogen (H2) respectively with the ideal selectivity of 4.3.  相似文献   

9.
Diffusion limitation in micropores of zeolites leads to a demand for optimization of zeolite morphology and/or porosity. However, tailoring crystallization processes to realize targeted morphology/porosity is a major challenge in zeolite synthesis. On the basis of previous work on the salt‐aided, seed‐induced route, the template effect of seeds on the formation of micropores, mesopores and even macropores was further explored to selectively achieve desired hierarchical architectures. By carefully investigating the crystallization processes of two typical samples with distinct crystal morphologies, namely, 1) nanocrystallite‐oriented self‐assembled ZSM‐5 zeolite and 2) enriched intracrystal mesoporous ZSM‐5 zeolite, a detailed mechanism is proposed to clarify the role of silicalite‐1 seeds in the formation of diverse morphologies in a salt‐rich heterogeneous system, combined with the transformation of seed‐embedded aluminosilicate gel. On the basis of these conclusions, the morphologies/porosities of products were precisely tailored by deliberately adjusting the synthesis parameters (KF/Si, tetrapropylammonium bromide/Si and H2O/Si ratios and type of organic template) to regulate the kinetics of seed dissolution and seed‐induced recrystallization. This work may not only provide a practical route to control zeolite crystallization for tailoring crystal morphology, but also expands the knowledge of crystal growth mechanisms in a heterogeneous system.  相似文献   

10.
以硅藻土为硅源, 在Na2O-Al2O3-SiO2(硅藻土)-H2O体系中, 采用水浴加热搅拌的方法在较低温度下快速合成了LTA型硅铝分子筛NaA. 通过调节温度和反应物的活性, 优化了NaA分子筛的合成过程, 实现了其在较短时间、 较低温度下的快速合成. 所合成的NaA分子筛展现出良好的质子传导性能, 在室温和100%相对湿度条件下, 其质子传导率为1.72×10-3 S/cm, 且随着温度的升高其质子传导率逐渐增大, 在80 ℃和100%相对湿度条件下, 质子传导率可以达到5.96×10-3 S/cm.  相似文献   

11.
Isomorphic substitution of boron into ZSM‐5 zeolite under microwave‐assisted hydrothermal conditions was systematically studied. When microwave treatment and conventional heating were used, BZSM‐5 zeolite could be obtained within one day, whereas the synthesis of BZSM‐5 under conventional hydrothermal conditions took five days at 180 °C. Various parameters that affect the crystallization of BZSM‐5, such as templates, crystallization time, the silicon source and the Si/B ratio were investigated. Systematic variations of these parameters revealed that this zeolite can be obtained from the reaction mixture with optimized ratios of Si/B > 0.6. Among various tested sources, tetraethylorthosilicate (TEOS) turned out to be the best source for synthesis of borosilicate zeolite and further investigations were done with TEOS as silicon source. The obtained products were characterized by XRD, SEM, and IR spectroscopic techniques.  相似文献   

12.
晶化时间对ZSM-5分子筛物化性质及催化性能的影响   总被引:5,自引:1,他引:4  
 考察了ZSM-5分子筛在晶化过程中的变化规律及其在苯与乙烯气相烷基化制乙苯反应中的催化性能.结果表明,当晶化时间为70h时,分子筛晶体开始出现;晶化90h时无定形物相基本消失.晶化时间从90h再延长至150h,ZSM-5分子筛晶粒的大小、形貌和体相硅铝比都基本不变,但分子筛表面的硅铝比逐渐降低.以晶化时间为90h的ZSM-5分子筛原粉为活性组元制备的催化剂,对苯与乙烯气相烷基化制乙苯反应表现出最佳的催化性能.  相似文献   

13.
The effect of weak base modification on the catalytic performance of ZSM‐5 catalyst for conversion of methanol to aromatics was investigated. The catalysts were characterized using X‐ray diffraction, X‐ray fluorescence, N2 adsorption–desorption, NH3 temperature‐programmed desorption, Fourier transform infrared spectroscopy, scanning electron microscopy and thermogravimetry. The results showed that catalysts treated with weak base (NaHCO3, Na2CO3 and NH3⋅H2O) exhibited a pore structure with interconnected micropores and mesopores. The existence of mesopores was beneficial for improving the diffusion of reactants and products, and the coke deposition resistance capacity of treated catalysts was enhanced greatly. Meanwhile, compared to traditional ZSM‐5 zeolite, the ratio of Brønsted to Lewis (B/L) acid sites of ZSM‐5/NH3⋅H2O (B/L = 7.35) zeolite slightly increased but the amount of acid sites reduced, while those of ZSM‐5/NaHCO3 (B/L = 0.127) and ZSM‐5/Na2CO3 (B/L = 0.107) significantly reduced. Further, the catalyst treated with NH3⋅H2O solution was evaluated in the methanol to aromatics reaction and led to an enhanced aromatization reaction rate. The liquid hydrocarbons product distribution exhibited higher aromatic hydrocarbons yield (56.12%) and selectivity (40.28%) of benzene, toluene and xylene (BTX) with isoparaffin content reducing to 26.17%, which could be explained by appropriate B/L acid sites ratio, higher pore volumes and higher surface area.  相似文献   

14.
The conditions for crystallization of zeolite NaA, whose small cages are partially or completely (one molecule per unit cell) filled with NaAlO2 molecules, were outlined. These molecules are occluded into cuboctahedra of zeolite NaA only during crystallization rather than during formation, aging, and modification of the initial aluminosilicate gels. Based on the data on the adsorption capacity for water in NaA zeolite samples, a small cage of this zeolite (cuboctahedron) adsorbs about four water molecules.Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1565–1569, August, 2004.  相似文献   

15.
A facile method has been developed for the fabrication of porous silicon carbide (SiC) by means of sintering a mixture of SiC powder and carbon pellets at a relatively lower temperature, that is, 1450 °C, in air. The pore density and the total pore volume of the resulting porous SiC could be tuned by changing the initial SiC/C weight ratio. The structure evolution and the associated property changes during the preparation were examined through X‐ray diffraction, scanning electron microscopy, thermogravimetric analysis, 29Si magic‐angle spinning (MAS) NMR spectroscopy, and mercury‐intrusion porosimetry analyses. Silica and SiOxCy ceramics formed in situ during the calcination process acted as binders of the porous SiC grains. The porous SiC can be used as a host for the growth of ZSM‐5 zeolite crystals to form the ZSM‐5/porous‐SiC composite material. After loading another catalytic active component of molybdenum, a novel catalytic material, Mo‐ZSM‐5/porous‐SiC, was obtained, which exhibited improved catalytic activity in the methane dehydroaromatization reaction.  相似文献   

16.
Despite significant progress achieved in Fischer–Tropsch synthesis (FTS) technology, control of product selectivity remains a challenge in syngas conversion. Herein, we demonstrate that Zn2+‐ion exchanged ZSM‐5 zeolite steers syngas conversion selectively to ethane with its selectivity reaching as high as 86 % among hydrocarbons (excluding CO2) at 20 % CO conversion. NMR spectroscopy, X‐ray absorption spectroscopy, and X‐ray fluorescence indicate that this is likely attributed to the highly dispersed Zn sites grafted on ZSM‐5. Quasi‐in‐situ solid‐state NMR, obtained by quenching the reaction in liquid N2, detects C2 species such as acetyl (‐COCH3) bonding with an oxygen, ethyl (‐CH2CH3) bonding with a Zn site, and epoxyethane molecules adsorbing on a Zn site and a Brønsted acid site of the catalyst, respectively. These species could provide insight into C?C bond formation during ethane formation. Interestingly, this selective reaction pathway toward ethane appears to be general because a series of other Zn2+‐ion exchanged aluminosilicate zeolites with different topologies (for example, SSZ‐13, MCM‐22, and ZSM‐12) all give ethane predominantly. By contrast, a physical mixture of ZnO‐ZSM‐5 favors formation of hydrocarbons beyond C3+. These results provide an important guide for tuning the product selectivity in syngas conversion.  相似文献   

17.
A series of metal catalysts was used for methane conversion to higher hydrocarbons and hydrogen in a dielectric barrier discharge. The main goal of this study is to identify the metal catalyst components which can influence the reactions in room‐temperature plasma conditions. The catalysts supported by γ‐Al2O3 and zeolite (ZSM 5x) were prepared by the incipient wetness method with solutions containing the metal ions of the second component. Among the catalysts tested, only Pt and Fe catalysts showed a unique result of catalytic reaction in a reactor bed packed with glass beads.  相似文献   

18.
Natural zeolite supported nano TiO2 photocatalysts were prepared by a modified electrostatic self‐assembly (ESA) method. First, γ‐mercaptopropyltrimethoxysilane with sulfhydryl (―SH) functional groups was modified on the zeolite powders by using a ‘dry process’. Second, silane with ―SH functional groups was oxidized to sulfonate (―SO3H) groups by using a hydrogen peroxide/glacial acetic acid mixed solution, and the surface of ―SO3H silane–zeolite was electronegative charged due to the ionization of ―SO3H. Third, the hydrolytic titanium polycation from TiCl4 solution assembled onto the electronegative charged zeolite under electrostatic attraction in the reaction solutions. Finally, zeolite supported nano TiO2 photocatalysts can be obtained after the above compounds calcined at certain temperature. The samples were characterized by X‐ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface areas, Fourier transform infrared spectroscopy (FT‐IR), X‐ray photoelectron spectroscopy (XPS) and X‐ray fluorescence (XRF). The photocatalytic activities of the samples were evaluated by the degradation of methyl orange in aqueous solution. The results showed that ESA method effectively improved the composite efficiency of zeolite with TiO2. The photocatalysts prepared by ESA method exhibited higher photocatalytic and recycling activities than that of traditional method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Confocal fluorescence microscopy was employed to selectively visualize the dispersion and orientation of zeolite ZSM‐5 domains inside a single industrially applied fluid catalytic cracking (FCC) catalyst particle. Large ZSM‐5 crystals served as a model system together with the acid‐catalyzed fluorostyrene oligomerization reaction to study the interaction of plane‐polarized light with these anisotropic zeolite crystals. The distinction between zeolite and binder material, such as alumina, silica, and clay, within an individual FCC particle was achieved by utilizing the anisotropic nature of emitted fluorescence light arising from the entrapped fluorostyrene‐derived carbocations inside the zeolite channels. This characterization approach provides a non‐invasive way for post‐synthesis characterization of an individual FCC catalyst particle in which the size, distribution, orientation, and amount of zeolite ZSM‐5 aggregates can be determined. It was found that the amount of detected fluorescence light originating from the stained ZSM‐5 aggregates corresponds to about 15 wt %. Furthermore, a statistical analysis of the emitted fluorescence light indicated that a large number of the ZSM‐5 domains appeared in small sizes of about 0.015–0.25 μm2, representing single zeolite crystallites or small aggregates thereof. This observation illustrated a fairly high degree of zeolite dispersion within the FCC binder material. However, the highest amount of crystalline material was aggregated into larger domains (ca. 1–5 μm2) with more or less similarly oriented zeolite crystallites. It is clear that this visualization approach may serve as a post‐synthesis quality control on the dispersion of zeolite ZSM‐5 crystallites within FCC particles.  相似文献   

20.
The hydrothermal crystallization of THF-FER zeolite was investigated in the reactant system of Na2O-SiO2-Al2O3-H2O with tetrahydrofuran (THF) as the template in the presence of various catalytic amount of glycerol [CH2(OH)CH(OH)CH2(OH), Glyc] in the temperature range of 413--473 K. Powder X-ray diffraction (XRD) was used to observe the crystallization process, and scanning electron microscope (SEM), ^13C cross polarization (CP) and ^27Al magic angle spinning nuclear magnetic resonance (MAS NMR), X-ray fluorescence scattering spectroscopy (XRF), thermal analysis and nitrogen sorption were used to characterize the zeolite synthesized in the reactant system with Glyc. The catalytic amount of Glyc could promote the crystallization of FER zeolite, to result in lowering the reaction temperature, shortening the period of the zeolite crystallization and effectively restraining cocrystallization of MOR zeolite as an impure phase especially at low reaction temperature, and possess a significant effect on the morphology and the crystal size of TI-IF-FER zeolite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号