首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Amyloid-β (Aβ) oligomers are implicated in Alzheimer disease (AD). However, their unstable nature and heterogeneous state disrupts elucidation of their explicit role in AD progression, impeding the development of tools targeting soluble Aβ oligomers. Herein parallel and anti-parallel variants of Aβ(1–40) dimers were designed and synthesized, and their pathogenic properties in AD models characterized. Anti-parallel dimers induced cognitive impairments with increased amyloidogenesis and cytotoxicity, and this dimer was then used in a screening platform. Through screening, two FDA-approved drugs, Oxytetracycline and Sunitinib, were identified to dissociate Aβ oligomers and plaques to monomers in 5XFAD transgenic mice. In addition, fluorescent Astrophloxine was shown to detect aggregated Aβ in brain tissue and cerebrospinal fluid samples of AD mice. This screening platform provides a stable and homogeneous environment for observing Aβ interactions with dimer-specific molecules.  相似文献   

2.
Small oligomers of the amyloid β (Aβ) peptide, rather than the monomers or the fibrils, are suspected to initiate Alzheimer′s disease (AD). However, their low concentration and transient nature under physiological conditions have made structural investigations difficult. A method for addressing such problems has been developed by combining rapid fluorescence techniques with slower two‐dimensional solid‐state NMR methods. The smallest Aβ40 oligomers that demonstrate a potential sign of toxicity, namely, an enhanced affinity for cell membranes, were thus probed. The two hydrophobic regions (residues 10–21 and 30–40) have already attained the conformation that is observed in the fibrils. However, the turn region (residues 22–29) and the N‐terminal tail (residues 1–9) are strikingly different. Notably, ten of eleven known Aβ mutants that are linked to familial AD map to these two regions. Our results provide potential structural cues for AD therapeutics and also suggest a general method for determining transient protein structures.  相似文献   

3.
《Electroanalysis》2017,29(12):2906-2912
The aggregation of amyloid‐β peptide (Aβ) is believed to play a crucial role in the Alzheimer's disease (AD) pathogenesis and is considered as a therapeutic target for treating AD. The Aβ electrooxidation via a Tyr‐10 residue, sensitive to a depletion of a pool of Aβ monomers and oligomers in the course of Aβ aggregation, may be employed for testing natural and synthetic organic compounds (including short peptides) potentially able to inhibit the pathological Aβ aggregation (antiaggregants). In the present work, using the known peptide antiaggregant RGKLVFFGR‐NH2 (OR2) and its scrambled variant KGLRVGFRF‐NH2 as a control, we demonstrate that the electrochemical method based on electrooxidation of an Aβ42 Tyr‐10 residue, when combined with methods allowing for the evaluation of the Aβ42 aggregate structure and size, can provide essential information regarding the antiaggregant impact on Aβ42 aggregation. Electrochemical measurements were performed using square wave voltammetry on carbon screen printed electrodes whereas the Aβ42 aggregate structure and size were analyzed by means of the conventional thioflavin T (ThT) based fluorescence assay and dynamic light scattering. While inhibiting Aβ42 fibrillation as manifested by the unchanged level of ThT fluorescence, the OR2 peptide antiaggregant had no effect on the decrease of Aβ42 electrooxidation current in the course of Aβ42 aggregation. These observations suggest that OR2 does not stop the aggregation but redirects it into a pathway where amorphous rather than fibrillar aggregates are formed. Hence, the direct electrochemistry appears to offer a simple and cost‐effective approach for probing potential peptide antiaggregants, which is complementary to methods based on detecting Aβ aggregates.  相似文献   

4.
A wealth of epidemiological evidence indicates a strong link between type 2 diabetes (T2D) and Alzheimer's disease (AD). The fiber deposition with cross‐β‐sheet structure formed by self‐aggregation and misfolding of amyloidogenic peptides is a common hallmark of both diseases. For the patients with T2D, the fibrils are mainly found in the islets of Langerhans that results from the accumulation of human islet amyloid polypeptide (hIAPP). The major component of aggregates located in the brain of AD patients is amyloid‐β (Aβ). Many biophysical and physiological properties are shared by hIAPP and Aβ, and both peptides show similar cytotoxic mechanisms. Therefore, it is meaningful to investigate the possible cross‐interactions of hIAPP and Aβ in both diseases. In this article, the segment 25–35 of Aβ was selected because Aβ25–35 was a core region in the process of amyloid formation and showed similar aggregation tendency and toxicity with full‐length Aβ. The electrospray ionization‐ion mobility‐mass spectrometry analysis and thioflavin T fluorescence kinetic analysis combined with transmission electron microscopy were used to explore the effects of the coexistence of Aβ25–35 and hIAPP on the self‐aggregation of both peptides and whether there was co‐assembly in fibrillation. The results indicated that the aggregation of hIAPP and Aβ25–35 had two nucleation stages in the binary mixtures. hIAPP and Aβ25–35 had a high binding affinity and a series of hetero‐oligomers formed in the mixtures of hIAPP and Aβ25–35 in the early stage. The cross‐reaction between hIAPP monomers and Aβ25–35 monomers as well as a little of oligomers during primary nucleation stage could accelerate the aggregation of Aβ25–35. However, owing to the obvious difference in aggregation ability between hIAPP and Aβ25–35, this cross‐interaction had no significant impact on the self‐assembly of hIAPP. Our study may offer a better understanding for exploring the molecular mechanism of the association between AD and T2D observed in clinical and epidemiological studies and developing therapeutic strategies against amyloid diseases.  相似文献   

5.
《化学:亚洲杂志》2017,12(1):67-75
Combining NMR spectroscopy, transmission electron microscopy, biochemical and in vitro toxicity assays, we characterized the effect of flavonoid glycosylation, a chemical modification found very frequently in nature, on their ability to recognize and bind Aβ1–42 oligomers, preventing their aggregation and their neurotoxicity. Our data allow the elucidation of their structure–activity relationships, showing that glycosylation has a modest impact on flavonoid affinity for Aβ oligomers but, at the same time, increases both solubility and chemical stability, thus promoting their beneficial properties against Alzheimer's disease (AD). As flavonoids and their glycosides are widely available in natural foods, our results provide important information for the evaluation of the role of a flavonoid‐rich diet for the prevention of AD. In addition, the structural data collected can be exploited for the rational design of more potent Aβ oligomer inhibitors, useful for the development of new therapies against AD.  相似文献   

6.
The amyloid‐β (Aβ) aggregation pathway is an important target for the discovery of drugs that can prevent or delay the onset of Alzheimer’s disease (AD). The electrochemistry of Congo Red (CR) represents a particularly promising tool for screening of Aβ‐binding therapeutics in a rapid and cost‐effective format. The results of the differential pulse voltammetry (DPV) measurements were confirmed using simultaneous UV‐vis analysis of the same incubated Aβ samples. The early changes in the electrochemical signals were attributed to the interaction of the Aβ oligomers with CR. The electrochemical approach, in principle, allowed monitoring small molecule‐Aβ interactions on the time scale of aggregation.  相似文献   

7.
Targeting amyloid‐β (Aβ)‐induced complex neurotoxicity has received considerable attention in the therapeutic and preventive treatment of Alzheimer’s disease (AD). The complex pathogenesis of AD suggests that it requires comprehensive treatment, and drugs with multiple functions against AD are more desirable. Herein, AuNPs@POMD‐pep (AuNPs: gold nanoparticles, POMD: polyoxometalate with Wells–Dawson structure, pep: peptide) were designed as a novel multifunctional Aβ inhibitor. AuNPs@POMD‐pep shows synergistic effects in inhibiting Aβ aggregation, dissociating Aβ fibrils and decreasing Aβ‐mediated peroxidase activity and Aβ‐induced cytotoxicity. By taking advantage of AuNPs as vehicles that can cross the blood–brain barrier (BBB), AuNPs@POMD‐pep can cross the BBB and thus overcome the drawbacks of small‐molecule anti‐AD drugs. Thus, this work provides new insights into the design and synthesis of inorganic nanoparticles as multifunctional therapeutic agents for treatment of AD.  相似文献   

8.
Aggregation of amyloid β‐peptide (Aβ) is closely related to the pathogenesis of Alzheimer’s disease (AD). Although much effort has been devoted to the construction of molecules that inhibit the aggregation of Aβ1‐42, high doses are needed for the inhibition of Aβ aggregation in many cases. Previously, we reported that designed green fluorescent protein (GFP) analogues that gives pseudo‐Aβ β‐sheet structures can work as an aggregation inhibitor against Aβ. To further test this design strategy, we constructed protein analogues that mimic Aβ β‐sheet structures of amyloids by using insulin‐like growth factor 2 receptor domain 11 (IGF2R‐d11) as a scaffold. A designed protein, named IG11KK, which has a parallel configuration of Aβ‐like β sheets, can bind more preferentially to oligomeric Aβ1‐42 than the monomer. Moreover, IG11KK suppressed the aggregation of Aβ1‐42 efficiently, even though lower concentrations of IG11KK than Aβ were used. The aggregation kinetics of Aβ in the presence of the designed proteins revealed that IG11KK can work as an inhibitor not only for the early to middle stages, but also in the latter stage of Aβ aggregation owing to its favorable binding to oligomeric structures of Aβ. The design strategy using β‐barrel proteins such as IGF2R‐d11 and GFP is useful in generating excellent inhibitors of protein misfolding and amyloid formation.  相似文献   

9.
β,β′‐Bisporphyrins are intrinsically chiral porphyrin dimers with fascinating properties. The configurational stability at their axes can be directed by variation of the central metal atoms. Herein, we present a regioselective functionalization of the monomeric 2‐amino‐tetraphenyl‐porphyrin as a versatile substrate for dimerization by oxidative coupling. By simple variation of the reaction conditions (solvent and oxidant), the oxidation selectively gave either the axially chiral C,C‐coupled diaminobisporphyrin in high yields or, under Ullmann conditions, the twofold N,C‐linked achiral dimer, also in good yields. A generalized mechanism for the coupling reaction is proposed based on DFT calculations. The axially chiral β,β′‐coupled porphyrin dimers were isolated as racemic mixtures, but can be resolved by HPLC on a chiral phase. TDDFT and coupled‐cluster calculations were used to explain the spectroscopic properties of the aminoporphyrins and their dimers and to elucidate the absolute configurations of the C,C‐coupled bisporphyrins.  相似文献   

10.
Alzheimer's disease (AD), as the most common progressive neurodegenerative disorder, is pathologically characterized by deposition of extracellular plaque composed of amyloid‐β peptide (Aβ). Different assembled states of Aβ have been considered as both important biomarkers and drug targets for the diagnosis and therapy of AD. Recent studies demonstrate that small, diffusible Aβ oligomers formed by aggregation of Aβ monomers are the major toxic agents in AD. Therefore, the development of reliable assays for Aβ (both monomers and oligomers) will be important for the early differential diagnosis of dementia, predicting the progression of AD, as well as monitoring the effectiveness of novel anti‐Aβ drugs for AD. In this review, we summarize the recent progress made in the development of techniques for detection of Aβ monomers and oligomers. In particular, the principles governing the design of these sensors are classified and summarized. Moreover, the advantages and disadvantages of the assays are evaluated. This review also discusses the improvements and challenges for application of these assays in the early diagnosis of AD.  相似文献   

11.
Oligomeric and protofibrillar aggregates formed by the amyloid‐β peptide (Aβ) are believed to be involved in the pathology of Alzheimer’s disease. Central to Alzheimer pathology is also the fact that the longer Aβ42 peptide is more prone to aggregation than the more prevalent Aβ40. Detailed structural studies of Aβ oligomers and protofibrils have been impeded by aggregate heterogeneity and instability. We previously engineered a variant of Aβ that forms stable protofibrils and here we use solid‐state NMR spectroscopy and molecular modeling to derive a structural model of these. NMR data are consistent with packing of residues 16 to 42 of Aβ protomers into hexameric barrel‐like oligomers within the protofibril. The core of the oligomers consists of all residues of the central and C‐terminal hydrophobic regions of Aβ, and hairpin loops extend from the core. The model accounts for why Aβ42 forms oligomers and protofibrils more easily than Aβ40.  相似文献   

12.
《Electroanalysis》2017,29(3):748-755
The beta‐amyloid (Aβ) peptide was used as an important biomarker for Alzheimer's disease (AD) diagnosis. The development of an accurate, selective, rapid, and highly sensitive technique for detecting of Aβ level is an important issue in biology, and medicine to assess human health risks. Here, gold nanoparticles (Au NPs) with different size were electrochemically deposited onto the indium tin oxide (ITO) substrate in the presence of different molecular weights of surfactants. The modified substrates were used as a high sensitive electrochemical sensor of in‐vitro as well as ex‐vivo monitoring of Aβ based on cyclic voltammetry and square wave voltammetry techniques. Our findings revealed that the modification of ITO electrode with Au NPs could enhance its sensor performance with high sensitivity for low concentration levels of Aβ over a wide linear range with a detection limit of about 20.7 ng/g, which is less than the concentration of insoluble Aβ40 (105.4±40.2 μg/g) in brain of AD induced. In addition, Au NPs/ITO modified electrodes have demonstrated ability to monitor Aβ in the brain extracted samples without any potential interference with other components. Raman spectroscopy has been used to confirm the presence of Aβ in the AD‐induced samples. Thus, it is applicable for analyzing ex‐vivo samples.  相似文献   

13.
Amyloid peptides, Aβ1–40 and Aβ1–42, represent major molecular targets to develop potential drugs and diagnostic tools for Alzheimer’s Disease (AD). In fact, oligomeric and fibrillar aggregates generated by these peptides are amongst the principal components of amyloid plaques found post mortem in patients suffering from AD. Rosmarinic acid has been demonstrated to be effective in preventing the aggregation of amyloid peptides in vitro and to delay the progression of the disease in animal models. Nevertheless, no information is available about its molecular mechanism of action. Herein, we report the NMR characterization of the interaction of Salvia sclareoides extract and that of its major component, rosmarinic acid, with Aβ1–42 peptide, whose oligomers have been described as the most toxic Aβ species in vivo. Our data shed light on the structural determinants of rosmarinic acid–Aβ1–42 oligomers interaction, thus allowing the elucidation of its mechanism of action. They also provide important information for the rational design of new compounds with higher affinity for Aβ peptides to generate new anti‐amyloidogenic molecules and/or molecular tools for the specific targeting of amyloid aggregates in vivo. In addition, we identified methyl caffeate, another natural compound present in different plants and human diet, as a good ligand of Aβ1–42 oligomers, which also shows anti‐amyloidogenic activity. Finally, we demonstrated the possibility to exploit STD‐NMR and trNOESY experiments to screen extracts from natural sources for the presence of Aβ peptide ligands.  相似文献   

14.
Accumulation of small soluble oligomers of amyloid-β (Aβ) in the human brain is thought to play an important pathological role in Alzheimer's disease. The interaction of these Aβ oligomers with cell membrane and other artificial surfaces is important for the understanding of Aβ aggregation and toxicity mechanisms. Here, we present a series of exploratory molecular dynamics (MD) simulations to study the early adsorption and conformational change of Aβ oligomers from dimer to hexamer on three different self-assembled monolayers (SAMs) terminated with CH(3), OH, and COOH groups. Within the time scale of MD simulations, the conformation, orientation, and adsorption of Aβ oligomers on the SAMs is determined by complex interplay among the size of Aβ oligomers, the surface chemistry of the SAMs, and the structure and dynamics of interfacial waters. Energetic analysis of Aβ adsorption on the SAMs reveals that Aβ adsorption on the SAMs is a net outcome of different competitions between dominant hydrophobic Aβ-CH(3)-SAM interactions and weak CH(3)-SAM-water interactions, between dominant electrostatic Aβ-COOH-SAM interactions and strong COOH-SAM-water interactions, and between comparable hydrophobic and electrostatic Aβ-OH-SAM interactions and strong OH-SAM-water interactions. Atomic force microscopy images also confirm that all of three SAMs can induce the adsorption and polymerization of Aβ oligomers. Structural analysis of Aβ oligomers on the SAMs shows a dramatic increase in structural stability and β-sheet content from dimer to trimer, suggesting that Aβ trimer could act as seeds for Aβ polymerization on the SAMs. This work provides atomic-level understanding of Aβ peptides at interface.  相似文献   

15.
Inhibition of the aggregation of the monomeric peptide β‐amyloid (Aβ) into oligomers is a widely studied therapeutic approach in Alzheimer’s disease (AD). Many small molecules have been reported to work in this way, including 1,4‐naphthoquinon‐2‐yl‐L ‐tryptophan (NQ‐Trp). NQ‐Trp has been reported to inhibit aggregation, to rescue cells from Aβ toxicity, and showed complete phenotypic recovery in an in vivo AD model. In this work we investigated its molecular mechanism by using a combined approach of experimental and theoretical studies, and obtained converging results. NQ‐Trp is a relatively weak inhibitor and the fluorescence data obtained by employing the fluorophore widely used to monitor aggregation into fibrils can be misinterpreted due to the inner filter effect. Simulations and NMR experiments showed that NQ‐Trp has no specific “binding site“‐type interaction with mono‐ and dimeric Aβ, which could explain its low inhibitory efficiency. This suggests that the reported anti‐AD activity of NQ‐Trp‐type molecules in in vivo models has to involve another mechanism. This study has revealed the potential pitfalls in the development of aggregation inhibitors for amyloidogenic peptides, which are of general interest for all the molecules studied in the context of inhibiting the formation of toxic aggregates.  相似文献   

16.
Aggregated β‐amyloid (Aβ) is widely considered as a key factor in triggering progressive loss of neuronal function in Alzheimer's disease (AD), so targeting and inhibiting Aβ aggregation has been broadly recognized as an efficient therapeutic strategy for curing AD. Herein, we designed and prepared an organic platinum‐substituted polyoxometalate, (Me4N)3[PW11O40(SiC3H6NH2)2PtCl2] (abbreviated as PtII‐PW11) for inhibiting Aβ42 aggregation. The mechanism of inhibition on Aβ42 aggregation by PtII‐PW11 was attributed to the multiple interactions of PtII‐PW11 with Aβ42 including coordination interaction of Pt2+ in PtII‐PW11 with amino group in Aβ42, electrostatic attraction, hydrogen bonding and van der Waals force. In cell‐based assay, PtII‐PW11 displayed remarkable neuroprotective effect for Aβ42 aggregation‐induced cytotoxicity, leading to increase of cell viability from 49 % to 67 % at a dosage of 8 μm . More importantly, the PtII‐PW11 greatly reduced Aβ deposition and rescued memory loss in APP/PS1 transgenic AD model mice without noticeable cytotoxicity, demonstrating its potential as drugs for AD treatment.  相似文献   

17.
Two inclusion complexes of β‐cyclodextrin‐7‐hydroxycoumarin ( 1 ) and β‐cyclodextrin‐4‐hydroxycoumarin ( 2 ) were prepared and their crystal structures were investigated by single crystal X‐ray crystallography under cryogenic condition. Both structures consist of stacks of face‐to‐face cyclodextrin dimers arranged in brickwork‐like pattern along the crystallographic a‐axis. For complex 1 , each of the two dimeric β‐cyclodextrins includes one 7‐hydroxycoumarin molecule that penetrates deeply into the cyclodextrin dimer and locates its lactonering at the center of the dimer cavity. For complex 2 , each cyclodextrin dimer accommodates three 4‐hydroxycoumarin molecules. One of them is sandwiched between two units of the cyclodextrin dimer, the other two are shallowly included in the cavities of the dimeric cyclodextrins respectively and protrude their lactone rings from the primary end of the cyclodextrin. The substituent effects of guest molecules on inclusion geometry of various coumarin molecules in β‐cyclodextrin were examined.  相似文献   

18.
Deposits comprised of amyloid‐β (Aβ) are one of the pathological hallmarks of Alzheimer's disease (AD) and small hydrophobic ligands targeting these aggregated species are used clinically for the diagnosis of AD. Herein, we observed that anionic oligothiophenes efficiently displaced X‐34, a Congo Red analogue, but not Pittsburgh compound B (PIB) from recombinant Aβ amyloid fibrils and Alzheimer's disease brain‐derived Aβ. Overall, we foresee that the oligothiophene scaffold offers the possibility to develop novel high‐affinity ligands for Aβ pathology only found in human AD brain, targeting a different site than PIB.  相似文献   

19.
Isothermal titration calorimetry (ITC) is one of the most powerful means for direct determination of thermodynamic information associated with most physiochemical and biological processes. The deposition and aggregation of β-amyloid (Aβ) on cell membranes was considered as one of the primary factors in having Alzheimer's disease (AD). Recently, a growing body of evidence has suggested that plasma membrane could accelerate the accumulation of Aβ on the plasma membranes. However, the mechanism of AD is still a controversial issue. This study provided a biothermodynamic approach to real-time monitor the heat of metabolism involved in the co-incubation of PC12 cells and Aβ(1-40) by ITC. The effects of Aβ conformation and concentration of oligomeric Aβ on cytotoxicity were successfully distinguished by ITC. This approach with rapid and direct measurement may provide not only real-time information for the effects of Aβ species on living cells but also a platform for the screening of drug candidates for AD.  相似文献   

20.
A set of flapping acene dimers fused with an 8π cyclooctatetraene (COT) ring showed distinct excited‐state dynamics in solution. While the anthracene dimer showed a fast V‐shaped‐to‐planar conformational change within 10 ps in the lowest excited singlet state, reminding us of extended Baird aromaticity, the tetracene dimer and the pentacene dimer underwent intramolecular singlet fission (SF) in different manners: A fast and reversible SF with a characteristic delayed fluorescence (FL), and a fast and quantitative SF, respectively. Conformational flexibility of the fused COT linkage plays an important role in these ultrafast dynamics, demonstrating the utility of the flapping molecular series as a versatile platform for designing photofunctional systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号