首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 396 毫秒
1.
The first chemical syntheses of complex, bis‐Strychnos alkaloids (?)‐sungucine ( 1 ), (?)‐isosungucine ( 2 ), and (?)‐strychnogucine B ( 3 ) from (?)‐strychnine ( 4 ) is reported. Key steps included (1) the Polonovski–Potier activation of strychnine N‐oxide; (2) a biomimetic Mannich coupling to forge the signature C23?C5′ bond that joins two monoterpene indole monomers; and (3) a sequential HBr/NaBH3CN‐mediated reduction to fashion the ethylidene moieties in 1 – 3 . DFT calculations were employed to rationalize the regiochemical course of reactions involving strychnine congeners.  相似文献   

2.
The asymmetric total synthesis of (?)‐maoecrystal V, a novel cytotoxic pentacyclic ent‐kaurane diterpene, has been accomplished. Key steps of the current strategy involve an early‐stage semipinacol rearrangement reaction for the construction of the C10 quaternary stereocenter, a rhodium‐catalyzed intramolecular O?H insertion reaction, and a sequential Wessely oxidative dearomatization/intramolecular Diels–Alder reaction to forge the pentacyclic framework of maoecrystal V.  相似文献   

3.
Salvinorin A ( 1 ) is natural hallucinogen that binds the human κ‐opioid receptor. A total synthesis has been developed that parlays the stereochemistry of l ‐(+)‐tartaric acid into that of (?)‐ 1 via an unprecedented allylic dithiane intramolecular Diels–Alder reaction to obtain the trans‐decalin scaffold. Tsuji allylation set the C9 quaternary center and a late‐stage stereoselective chiral ligand‐assisted addition of a 3‐titanium furan upon a C12 aldehyde/C17 methyl ester established the furanyl lactone moiety. The tartrate diol was finally converted into the C1,C2 keto‐acetate.  相似文献   

4.
The bioactive Kopsia alkaloids lundurines A–D are the only natural products known to contain indolylcyclopropane. Achieving their syntheses can provide important insights into their biogenesis, as well as novel synthetic routes for complex natural products. Asymmetric total synthesis of (?)‐lundurine A has previously been achieved through a Simmons–Smith cyclopropanation strategy. Here, the total synthesis of (?)‐lundurine A was carried out using a metal‐catalyzed diazo cyclopropanation strategy. In order to avoid a carbene C?H insertion side reaction during cyclopropanation of α‐diazo‐ carboxylates or cyanides, a one‐pot, copper‐catalyzed Bamford–Stevens diazotization/diazo decomposition/cyclopropanation cascade was developed, involving hydrazone. This approach simultaneously generates the C/D/E ring system and the two chiral quaternary centers at C2 and C7.  相似文献   

5.
A sensitive, accurate and precise liquid chromatography–tandem mass spectrometry method was developed for the determination of (?)‐satropane (3α‐paramethyl‐benzenesulfonyloxy‐6β‐acetoxy‐tropane) in rabbit aqueous humor. Since (?)‐satropane may be absorbed from the aqueous humour with resultant systemic side effects, the LC‐MS/MS method was also evaluated for its applicability in analyzing plasma samples containing this compound. (?)‐Satropane and phentolamine (the internal standard, represented as IS) were detected by multiple reaction monitoring using the transitions m/z 354–182 and 282–212, respectively. The calibration curve was linear over the ranges 2–500 and 5–1000 ng/mL, and the values of the lower limit of quantification were 2 and 5 ng/mL for the microdialysis dialysate and rat plasma samples, respectively. The intra‐day and inter‐day precision and accuracy were better than 8.6 and 6.00%, respectively, in both matrices investigated. The absolute recovery of the plasma samples was more than 76.30%. The average matrix effects of (?)‐satropane were 91.72 and 83.05% in the microdialysis dialysate and plasma samples, respectively. The validated method was successfully applied to analyze (?)‐satropane in microdialysis dialysate and rat plasma samples, and this assay has been used to quantify (‐)‐satropane in the pharmacokinetic and toxicokinetic studies in our laboratory. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
No bones about it : (?)‐Norzoanthamine, a promising candidate for an anti‐osteoporotic drug, was the target of a total synthesis (see scheme). The final bisaminal formation with AcOH/H2O gave the DEFG ring, while the cyclization precursor was prepared by installing the remaining bisaminal unit after oxidative cleavage of the cyclopentanol moiety.

  相似文献   


7.
A simple, efficient synthesis is reported for (?)‐cis‐α‐ and (?)‐cis‐γ‐irone, two precious constituents of iris oils, in ≥99 % diastereomeric and enantioselective ratios. The two routes diverge from a common intermediate prepared from (?)‐epoxygeraniol. Of general interest in this approach is the installation of the enone moiety of irones through a NHC?AuI‐catalyzed Meyer–Schuster‐like rearrangement of a propargylic benzoate and the use of Wilkinson’s catalyst for the stereoselective hydrogenation of a prostereogenic exocyclic double bond to secure the critical cis stereochemistry of the alkyl groups at C2 and C6 of the irones. The stereochemical aspects of this reaction are rationally supported by DFT calculation of the conformers of the substrates undergoing the hydrogenation and by a modeling study of the geometry of the rhodium η2 complexes involved in the diastereodifferentiation of the double bond faces. Thus, computational investigation of the η2 intermediates formed in the catalytic cycle of prostereogenic alkene hydrogenation by using Wilkinson’s catalyst could be highly predictive of the stereochemistry of the products.  相似文献   

8.
The first asymmetric total synthesis of (?)‐ligustiphenol is reported. The key step was conducted by exploiting a steric hindrance effect to control the formation of the adduct in a nucleophilic α‐Li‐phenolate addition reaction to the intermediate α‐oxo (?)‐menthyl ester. The synthesis is concise and feasible for the construction of analogous compounds and investigation of their biological activity.  相似文献   

9.
A formal synthesis of (?)‐cephalotaxine ( 1 ) by means of a highly stereoselective radical carboazidation process is reported. The synthesis begins with the protected (S)‐cyclopent‐2‐en‐1‐ol derivative 10 and uses the concept of self‐reproduction of a stereogenic center (Schemes 5 and 6). For this purpose, the double bond adjacent to the initial chiral center in 10 is converted into an acetonide after stereoselective dihydroxylation. The initial alcohol function is used to build an exocyclic methylene group suitable for the carboazidation process 8 → 7 (Scheme 7). Finally the protected diol moiety is converted back to an alkene ( 14 → 15 → 6 ) and used for the formation of ring B via a Heck reaction ( 6 →(?)‐ 16 ; Scheme 8).  相似文献   

10.
We report an efficient and highly stereoselective strategy for the synthesis of Aspidosperma alkaloids based on the transannular cyclization of a chiral lactam precursor. Three new stereocenters are formed in this key step with excellent diastereoselectivity due to the conformational bias of the cyclization precursor, leading to a versatile pentacyclic intermediate. A subsequent stereoselective epoxidation followed by a mild formamide reduction enabled the first total synthesis of the Aspidosperma alkaloids (?)‐mehranine and (+)‐(6S,7S)‐dihydroxy‐N‐methylaspidospermidine. A late‐stage dimerization of (?)‐mehranine mediated by scandium trifluoromethanesulfonate completed the first total synthesis of (?)‐methylenebismehranine.  相似文献   

11.
(?)‐Platensimycin is a potent inhibitor of fatty acid synthase that holds promise in the treatment of metabolic disorders (e.g., diabetes and “fatty liver”) and pathogenic infections (e.g., those caused by drug‐resistant bacteria). Herein, we describe its total synthesis through a four‐step preparation of the aromatic amine fragment and an improved stereocontrolled assembly of the ketolide fragment, (?)‐platensic acid. Key synthetic advances include 1) a modified Lieben haloform reaction to directly convert an aryl methyl ketone into its methyl ester within 30 seconds, 2) an experimentally improved dialkylation protocol to form platensic acid, 3) a sterically controlled chemo‐ and diastereoselective organocatalytic conjugate reduction of a spiro‐cyclized cyclohexadienone by using the trifluoroacetic acid salt of α‐amino di‐tert‐butyl malonate, 4) a tetrabutylammonium fluoride promoted spiro‐alkylative para dearomatization of a free phenol to assemble the cagelike ketolide core with the moderate leaving‐group ability of an early tosylate intermediate, and 5) a bismuth(III)‐catalyzed Friedel–Crafts cyclization of a free lactol, with LiClO4 as an additive to liberate a more active oxocarbenium perchlorate species and suppress the Lewis basicity of the sulfonyloxy group. The longest linear sequence is 21 steps with an overall yield of 3.8 % from commercially available eugenol.  相似文献   

12.
The first total synthesis of the natural product (?)‐(19R)‐ibogamin‐19‐ol ((?)‐ 1 ) is reported (biogenetic atom numbering). Starting with L ‐glutamic acid from the chiral pool and (2S)‐but‐3‐en‐2‐ol, the crucial aliphatic isoquinuclidine (= 2‐azabicyclo[2.2.2]octane) core containing the entire configurational information of the final target was prepared in 15 steps (overall yield: 15%). The two key steps involved a highly effective, self‐immolating chirality transfer in an Ireland–Claisen rearrangement and an intramolecular nitrone‐olefin 1,3‐dipolar cycloaddition reaction (Scheme 3). Onto this aliphatic core was grafted the aromatic moiety in the form of N(1)‐protected 1H‐indole‐3‐acetic acid by application of the dicyclohexylcarbodiimide (DCC) method (Scheme 4). Four additional steps were required to adjust the substitution pattern at C(16) and to deprotect the indole subunit for the closure of the crucial 7‐membered ring present in the targeted alkaloid family (Schemes 4 and 5). The spectral and chiroptical properties of the final product (?)‐ 1 matched the ones reported for the naturally occurring alkaloid, which had been isolated from Tabernaemonatana quadrangularis in 1980. The overall yield of the entire synthesis involving a linear string of 20 steps amounted to 1.9% (average yield per step: 82%).  相似文献   

13.
Throw your hat in the ring : A highly diastereoselective synthesis of the ABC rings of (?)‐norzoanthamine has been achieved starting from the (?)‐Hajos–Parrish ketone (see scheme). Three asymmetric quaternary carbon centers on the C ring were constructed by a 1,4‐addition, and an intramolecular Diels–Alder reaction provided a trans‐decalin scaffold on the AB rings.

  相似文献   


14.
An efficient and short total synthesis of (?)‐cleistenolide ( 1 ) from D ‐mannitol with an overall yield of 23.6% is described. The chiron approach for the synthesis of (?)‐cleistenolide involves a one‐C‐atom Wittig olefination, a selective allylic triethylsilyl protection, and a Grubbs‐catalyzed ring‐closure‐metathesis (RCM) reaction as the key steps.  相似文献   

15.
An asymmetric, organocatalytic, one‐pot Mannich cyclization between a hydroxylactam and acetal is described to provide fused, bicyclic alkaloids bearing a bridgehead N atom. Both aliphatic and aromatic substrates were used in this transformation to furnish chiral pyrrolizidinone, indolizidinone, and quinolizidinone derivatives in up to 89 % yield and 97 % ee. The total syntheses of (?)‐epilupinine, (?)‐tashiromine, and (?)‐trachelanthamidine also achieved to demonstrate the generality of the process.  相似文献   

16.
A collective synthesis of glycosylated monoterpenoid indole alkaloids is reported. A highly diastereoselective Pictet–Spengler reaction with α‐cyanotryptamine and secologanin tetraacetate as substrates, followed by a reductive decyanation reaction, was developed for the synthesis of (?)‐strictosidine, which is an important intermediate in biosynthesis. This two‐step chemical method was established as an alternative to the biosynthetically employed strictosidine synthase. Furthermore, after carrying out chemical and computational studies, a transition state for induction of diastereoselectivity in our newly discovered Pictet–Spengler reaction is proposed. Having achieved the first enantioselective total synthesis of (?)‐strictosidine in just 10 steps, subsequent bioinspired transformations resulted in the concise total syntheses of (?)‐strictosamide, (?)‐neonaucleoside A, (?)‐cymoside, and (?)‐3α‐dihydrocadambine.  相似文献   

17.
(?)‐Daphnilongeranin B and (?)‐daphenylline are two hexacyclic Daphniphyllum alkaloids, each containing a complex cagelike backbone. Described herein are the first asymmetric total synthesis of (?)‐daphnilongeranin B and a bioinspired synthesis of (?)‐daphenylline with an unusual E ring embedded in a cagelike framework. The key features include an intermolecular [3+2] cycloaddition, a late‐stage aldol cyclization to install the F ring of daphnilongeranin B, and a bioinspired cationic rearrangement leading to the tetrasubstituted benzene ring of daphenylline.  相似文献   

18.
A concise and highly stereoselective total synthesis of the Daphniphyllum alkaloids (?)‐daphenylline has been accomplished. The synthesis was started from (S)‐carvone and proceeded via a stereoselective Mg(ClO4)2‐catalyzed intramolecular amide addition cyclization, an intramolecular Diels–Alder reaction to construct the ABCD tetracyclic core architecture, and a Robinson annulation coupled with an oxidative aromatization sequence. Finally, the DF ring system was installed through an intramolecular Friedel–Crafts cyclization. The total synthesis of (?)‐daphenylline is achieved in 19 steps in the longest reaction sequence and in 7.6 % overall yield.  相似文献   

19.
We have developed an efficient total synthesis of (?)‐morphine in 5 % overall yield with the longest linear sequence consisting of 17 steps from 2‐cyclohexen‐1‐one. The cyclohexenol unit was prepared by means of an enzymatic resolution and a Suzuki–Miyaura coupling as key steps. Construction of the morphinan core features an intramolecular aldol reaction and an intramolecular 1,6‐addition. Furthermore, mild deprotection conditions to remove the 2,4‐dinitrobenzenesulfonyl (DNs) group enabled the facile construction of the morphinan skeleton. We have also established an efficient synthetic route to a cyclohexenol unit containing an N‐methyl‐DNs‐amide moiety.  相似文献   

20.
An enantioselective total synthesis of (?)‐cladospolide B was described. The key steps in this synthesis include(a) a Sharpless asymmetric dihydroxylation to elaborate syn diol at C‐4 and C‐5 positions; (b) a Mitsunobu esterification to reverse the configuration at C‐11 from (S) to (R); and (c) a ring‐closing metathesis to access the 12‐membered macrocyclic ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号