首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents an efficient strategy based on liquid‐liquid extraction and pH‐zone‐refining counter‐current chromatography for selective enrichment, separation, and purification of alkaloids and organic acids from natural products. First, an acid or base modified two‐phase solvent system with maximum or minimum partition coefficient was developed for the liquid‐liquid extraction of the crude extract. As a result, alkaloids or organic acids could be selectively enriched in the upper or lower phase. Then pH‐zone‐refining counter‐current chromatography was employed to separate and purify the selectively enriched alkaloids or organic acids efficiently. The selective enrichment and separation of five bufadienolide from toad venom of Bufo marinus was used as an example to show the advantage of this strategy. As a result, 759 mg of selectively enriched bufadienolide was obtained from 2 g of crude extract and the total content of five targets was increased from 14.64 to 83%. A total of 31 mg of marinobufagin‐3‐adipoyl‐l ‐arginine, 42 mg of telocinobufagin‐3‐pimeloyl‐l ‐arginine, 51 mg of telocinobufagin‐3‐suberoyl‐l ‐arginine, 132 mg of marinobufagin‐3‐suberoyl‐l ‐arginine, and 57 mg of bufalin‐3‐suberoyl‐l ‐arginine were all simultaneously separated from 500 mg of selectively enriched sample, with the purity of 92.4, 97.5, 90.3, 92.1, and 92.8%, respectively.  相似文献   

2.
An efficient method for the preparative separation of four structurally similar caged xanthones from the crude extracts of gamboge was established, which involves the combination of pH‐zone‐refining counter‐current chromatography and conventional high‐speed counter‐current chromatography for the first time. pH‐zone‐refining counter‐current chromatography was performed with the solvent system composed of n‐hexane/ethyl acetate/methanol/water (7:3:8:2, v/v/v/v), where 0.1% trifluoroacetic acid was added to the upper organic stationary phase as a retainer and 0.03% triethylamine was added to the aqueous mobile phase as an eluter. From 3.157 g of the crude extract, 1.134 g of gambogic acid, 180.5 mg of gambogenic acid and 572.9 mg of a mixture of two other caged polyprenylated xanthones were obtained. The mixture was further separated by conventional high‐speed counter‐current chromatography with a solvent system composed of n‐hexane/ethyl acetate/methanol/water (5:5:10:5, v/v/v/v) and n‐hexane/methyl tert‐butyl ether/acetonitrile/water (8:2:6:4,v/v/v/v), yielding 11.6 mg of isogambogenic acid and 10.4 mg of β‐morellic acid from 218.0 mg of the mixture, respectively. The purities of all four of the compounds were over 95%, as determined by high‐performance liquid chromatography, and the chemical structures of the four compounds were confirmed by electrospray ionization mass spectrometry and NMR spectroscopy. The combinative application of pH‐zone‐refining counter‐current chromatography and conventional high‐speed counter‐current chromatography shows great advantages in isolating and enriching the caged polyprenylated xanthones.  相似文献   

3.
C19‐diterpenoid alkaloids are the main components of Aconitum duclouxii Levl. The process of separation and purification of these compounds in previous studies was tedious and time consuming, requiring multiple chromatographic steps, thus resulted in low recovery and high cost. In the present work, five C19‐diterpenoid alkaloids, namely, benzoylaconine ( 1 ), N‐deethylaconitine ( 2 ), aconitine ( 3 ), deoxyaconitine ( 4 ), and ducloudine A ( 5 ), were efficiently prepared from A. duclouxii Levl (Aconitum L.) by ethyl acetate extraction followed with counter‐current chromatography. In the process of separation, the critical conditions of counter‐current chromatography were optimized. The two‐phase solvent system composed of n‐hexane/ethyl acetate/methanol/water/NH3·H2O (25%) (1:1:1:1:0.1, v/v) was selected and 148.2 mg of 1 , 24.1 mg of 2 , 250.6 mg of 3 , 73.9 mg of 4, and 31.4 mg of 5 were obtained from 1 g total Aconitum alkaloids extract, respectively, in a single run within 4 h. Their purities were found to be 98.4, 97.2, 98.2, 96.8, and 96.6%, respectively, by ultra‐high performance liquid chromatography analysis. The presented separation and purification method was simple, fast, and efficient, and the obtained highly pure alkaloids are suitable for biochemical and toxicological investigation.  相似文献   

4.
Triterpene acids were extracted from the epidermis of Poria cocos (Schw.) Wolf. These acids were found to inhibit the growth of lung cancer cells in vitro and in vivo. An efficient method for the preparative separation of antitumor triterpene acids was established that involves the combination of pH‐zone‐refining counter‐current chromatography and conventional high‐speed counter‐current chromatography. We used pH‐zone‐refining counter‐current chromatography to concentrate the triterpene acids using a two‐phase solvent system composed of petroleum ether/ethyl acetate/methanol/water (3:7:5:5, v/v/v/v), trifluoroacetic acid (10 mM) was added to the upper phase as a retainer, and ammonia (10 mM) was added to the lower phase as an eluter. As a result, 200 mg concentrate of triterpene acids was obtained from 1.0 g of crude extract. The concentrate was further separated by conventional high‐speed counter‐current chromatography using a solvent system composed of petroleum ether/ethyl acetate/methanol/water (0.8:1.2:1.2:0.9, v/v), yielding 50 mg of poricoic acid A and 5 mg of poricoic acid B from 120 mg concentrate, respectively. The inhibitory activity of the major compound on lung A549 cells was examined and poricoic acid A was found to significantly inhibit the growth of A 549 cells.  相似文献   

5.
This study aimed to seek an efficient method to extract and purify yunaconitine and 8‐deacetylyunaconitine from Aconitum vilmorinianum Kom. by accelerated solvent extraction combined with pH‐zone‐refining counter‐current chromatography. The major extraction parameters for accelerated solvent extraction were optimized by an orthogonal test design L9 (3)4. Then a separation and purification method was established using pH‐zone‐refining counter‐current chromatography with a two‐phase solvent system composed of petroleum ether/ethyl acetate/methanol/water (5:5:2:8, v/v) with 10 mM triethylamine in the upper phase and 10 mM HCl in the lower phase. From 2 g crude extract, 224 mg of 8‐deacetylyunaconitine (I) and 841 mg of yunaconitine (II) were obtained with a purity of over 98.0%. The chemical structures were identified by ESI‐MS and 1H and 13C NMR spectroscopy.  相似文献   

6.
Monoester‐diterpenoid alkaloids are the main bioactive components of Sini decoction, which is a well‐known traditional Chinese medicine formula for the treatment of myocardial infarction (MI) and heart failure in China. In this work, an ultra‐high‐performance liquid chromatography–mass spectrometry combined with microdialysis method was successfully established and applied for investigating for the first time comparative plasma pharmacokinetics of three monoester‐diterpenoid alkaloids (benzoylmesaconitine, benzoylaconitine and benzoylhypacoitine) in normal and MI rats after oral administration of Sini decoction. The statistical results of pharmacokinetic parameters demonstrated that benzoylmesaconitine, benzoylaconitine and benzoylhypacoitine showed lower peak concentration, longer half‐life, smaller area under the concentration–time curve, slower clearance, time to peak concentration and mean residence time in MI rats than in normal rats (p < 0.05), which indicated that monoester‐diterpenoid alkaloids exhibited lower systemic exposure and slower elimination in the MI rats. The results provided the experimental basis for understanding the metabolic fate and therapeutic effects of Sini decoction.  相似文献   

7.
Aconite alkaloids from the roots of Aconitum carmichaeli (Fuzi, in Chinese) have been investigated by rapid‐resolution liquid chromatography coupled with time‐of‐flight mass spectrometry (TOFMS) in positive mode. With dynamic adjustment of the key role as fragmentor voltage in TOFMS, an efficient transmission of the ions was achieved to obtain the best sensitivity for providing the molecular formula for each analyte, and abundant fragment ions for structural information. Fifteen authentic standards isolated from Fuzi with various structures were first characterized by TOFMS, including diester‐diterpenoid alkaloids (DDAs), monoester‐diterpenoid alkaloids (MDAs), alkylol amine‐diterpenoid alkaloids (ADAs), veatchine‐type alkaloids and atisine‐type alkaloids. Fragmentation rules and key diagnostic fragment ions have been summarized, and possible pathways of fragmentation have been proposed. By accurate mass measurements within 5 ppm error for each ion, 30 C19‐diterpenoid alkaloids including 10 DDAs, 3 MDAs, 9 ADAs and 8 other type alkaloids, and 8 C20‐diterpenoid alkaloids including 4 veatchine‐type alkaloids and 4 atisine‐type alkaloids could be identified in a methanolic extract of Fuzi. Some isomers of aconite alkaloids were also differentiated. Based on the differences between their fragmentation pathways and special fragment ions, each type of aconite alkaloids was differentiated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The optimal extraction condition for extracting quaternary ammonium alkaloid dehydrocorydaline from Corydalis yanhusuo W. T. Wang was investigated using orthogonal experimental design. pH‐zone‐refining counter‐current chromatography (CCC) with normal phase elution was successfully applied to preparative separation of alkaloids from the crude extract of Corydalis yanhusuo. The separation was performed with a biphasic solvent system composed of chloroform (CHCl3)–methanol (MeOH)–water (2:1:1, v/v), in which the lower organic phase containing 10 mM of triethylamine was used as the mobile phase, while the upper aqueous phase containing 10 mM of hydrochloric acid was used as the stationary phase. The separation mechanism of quaternary ammonium alkaloids using pH‐zone‐refining CCC was discussed in comparison with standard high‐speed CCC. In the present study, the separation of 1.200 g of crude sample yielded 129 mg of dehydrocorydaline and 12 mg of palmatine at a high purity of 94 and 92%, respectively. Recovery for dehydrocorydaline and palmatine was 85 and 86%, respectively.  相似文献   

9.
Tropane alkaloids are bioactive metabolites with great importance in the pharmaceutical industry and the most important class of natural products found in the Erythroxylum genus. However, these compounds are usually separated by traditional chromatographic techniques, in which the sample is progressively purified in multiple chromatographic steps, resulting in a time‐ and solvent‐consuming procedure. In this work we present the isolation of a novel alkaloid, 6β,7β‐dibenzoyloxytropan‐3α‐ol, together with the two known 3α‐benzoyloxynortropan‐6β‐ol and 3α,6β‐dibenzoyloxytropane alkaloids, directly from the crude alkaloid fraction from the leaves of Erythroxylum subsessile, by using a single run pH‐zone‐refining counter‐current chromatography method. The ethyl acetate/water (1:1, v/v) biphasic solvent system with triethylamine and HCl as retention and eluter agents, respectively, was used to isolate tropane alkaloids for the first time. The structures of the isolated alkaloids were elucidated by spectroscopic methods.  相似文献   

10.
Seven hydroxyanthraquinones were successfully separated from the traditional Chinese medicinal herb Cassiae semen by conventional and pH‐zone‐refining countercurrent chromatography with an environmentally friendly biphasic solvent system, in which elution–extrusion mode was investigated for pH‐zone‐refining countercurrent chromatography for the first time. A two‐phase solvent system composed of n‐hexane/ethyl acetate/ethanol/water (5:3:4:4, v/v/v/v) was used for the conventional countercurrent chromatography while the same system with a different volume ratio n‐hexane/ethyl acetate/ethanol/water (3:5:2:6, v/v/v/v) was used for pH‐zone‐refining countercurrent chromatography, in which 20 mmol/L of trifluoroacetic acid was added in the organic phase as a retainer and 15 mmol/L of ammonia was added to the aqueous phase as an eluter. A 400 mg crude sample could be well separated by pH‐zone‐refining countercurrent chromatography, yielding 53 mg of aurantio‐obtusin, 40 mg of chryso‐obtusin, 18 mg of obtusin, 24 mg of obtusifolin, 10 mg of emodin, and 105 mg of the mixture of chrysophanol and physcion with a purity of over 95.8, 95.7, 96.9, 93.5, 97.4, 77.1, and 19.8%, as determined by high‐performance liquid chromatography. Furthermore, the difference in elution sequence between conventional and pH‐zone‐refining mode was observed and discussed.  相似文献   

11.
Two β‐adrenergic blocking agents, 1‐[(1‐methylethyl)amino]‐3‐phenoxy‐2‐propanol ( 1 ) and 1‐[(1‐methylethyl)amino]‐3‐(3‐methylphenoxy)‐2‐propanol ( 2 ; Toliprolol), were enantioseparated by pH‐zone‐refining countercurrent chromatography. A two‐phase solvent system composed of chloroform containing 0.10 mol/L of di‐n‐hexyl l‐ tartrate/0.10 mol/L of boric acid aqueous solution (1:1, v/v) was selected, in which 20 mmol/L triethylamine was added in the organic phase as a retainer and 2 mmol/L HCl was added in the aqueous phase as an eluter. Fifty milligrams of each racemate was completely enantioseparated by pH‐zone‐refining countercurrent chromatography to yield each enantiomer with a purity of more than 98%, and the recovery of each separated enantiomer reached around 76–82%.  相似文献   

12.
Glycosides including triterpenoid saponins and flavonoid glycosides are the main constituents of Glycyrrhiza uralensis Fisch (licorice) and exhibit prominent pharmacological activities. However, conventional methods for the separation of glycosides always cause irreversible adsorption and unavoidable loss of sample due to their high hydrophilicities. The present paper describes a convenient method for the simultaneous separation of triterpenoid saponins and flavonoid glycosides from licorice by pH‐zone‐refining counter‐current chromatography. Ethyl acetate/n‐butanol/water (2:3:5, v/v) with 10 mM TFA in the upper organic stationary phase and 10 mM ammonia in the lower aqueous mobile phase was used as the biphasic solvent system. Three triterpenoid saponins and two flavonoid glycosides including licorice‐saponin A3 (63.3 mg), glycyrrhizic acid (342.2 mg), 3‐O‐[β‐d ‐glucuronopyranosyl‐(1 → 2)‐β‐d ‐galactopyranosyl]glycyrrhetic acid (56.0 mg), liquiritin apioside (232.6 mg), and liquiritin (386.5 mg) were successfully obtained from licorice ethanol extract (2 g) in one step. This method subtly takes advantage of the common acidic properties of triterpenoid saponins and flavonoid glycosides, and obviously is much more efficient and convenient than the previous methods. It is also the first time that the separation of acidic triterpenoid saponins by using pH‐zone‐refining counter‐current chromatography has been reported.  相似文献   

13.
pH‐Zone‐refining centrifugal‐partition chromatography (CPC) was successfully applied in the separation of complex polar steroidal glycoalkaloids of close Rf values, directly from a crude extract of Solanum xanthocarpum. The experiment was performed with a two phase solvent system composed of ethyl acetate/butanol/water (1:4:5 by volume) where triethylamine (5 mM) was added to the upper organic mobile phase as an eluter and TFA (10 mM) to the aqueous stationary phase as a retainer. Separation of 1 g of crude extract over CPC resulted in two distinct pH‐zones. The fractions collected in pH‐zone i afforded 72 mg of solasonine while the fractions collected in pH‐zone ii were slightly impure, hence were purified over medium pressure LC, which afforded 30 mg of solasonine and further 15 mg of solamargine (SM). The steroidal glycoalkaloids, SM and solasonine were isolated in 93.3 and 91.6% purity, respectively. The isolated alkaloids were characterized on the basis of their 1H, 13C‐NMR, and ESI‐MS data.  相似文献   

14.
Macleaya cordata (Willd) R. Br. is a medicinal plant. The most important bioactive compounds of M. cordata are alkaloids that have many biological activities including antifungal, anti‐inflammatory, and antitumor. In this study, an ionic‐liquid‐modified high‐speed counter‐current chromatography method was established to obtain alkaloids from the fruits of M. cordata. The conditions of ionic‐liquid‐modified high‐speed counter‐current chromatography, including solvent systems, the content of ionic liquid (1‐butyl‐3‐methylimidazolium tetrafluoroborate [C4mim][BF4]), and the posttreatment of the ionic liquid, were investigated. Five alkaloids protopine, allocryptopine, sanguinarine, 8‐O‐demethylchelerythrine, and chelerythrine were separated from the extract of the fruits using a high speed counter‐current chromatography with two‐phase solvent system composed of dichloromethane/methanol/0.3 mol/L hydrochloric acid aqueous solution/[C4mim][BF4] (4:2:2:0.015, v/v). Their purities were 96.33, 95.56, 97.94, 96.22, and 97.90%, respectively. The results indicated that a small amount of ionic liquids as modifier of the two‐phase solvent system could shorten the separation time and improve the separation efficiency of the alkaloids from the fruits. The ionic‐liquid‐modified high‐speed counter‐current chromatography would provide a feasible way for highly effective separation of alkaloids from natural products.  相似文献   

15.
In this paper, an ultra high performance liquid chromatography tandem mass spectrometric (UPLC‐ESI‐MS/MS) method in positive ion mode was established to systematically identify and to compare the major aconitum alkaloids and their metabolites in rat plasma and urine after oral administration of Fuzi extract. A total twenty‐nine components including twenty‐five C19‐diterpenoid alkaloids and four C20‐diterpenoid alkaloids were identified in Fuzi extract. Thirteen of the parent components and five metabolites were detected in rat plasma and sixteen parent compounds and six metabolites in urine. These parent components found in rat plasma and urine were mainly C19‐diterpenoid alkaloids. All of the metabolites in vivo were demethylated metabolites (phase I metabolites), which suggested that demethylation was the major metabolic pathway of aconitum alkaloids in vivo. A comparison of the parent components in rat plasma and urine revealed that 3‐deoxyacontine was found in plasma but not in urine, while kalacolidine, senbusine and 16‐β‐hydroxycardiopetaline existed in urine but not in plasma, which indicated that most alkaloids components were disposed and excreted in prototype form. This research provides some important information for further metabolic investigations of Fuzi in vivo.  相似文献   

16.
pH‐zone‐refining centrifugal partition chromatography was successively applied in the large‐scale separation of close Rf antipsychotic indole alkaloids directly from CHCl3 fraction of Rauwolfia tetraphylla leaves. Two experiments with increasing mass from 500 mg to 3 g of crude alkaloid extracts ( 1 C) of R. tetraphylla were carried out in normal‐displacement mode using a two‐phase solvent system composed of methyl tert‐butyl ether/ACN/water (4:1:5, v/v/v) where HCl (12 mM) was added to the lower aqueous stationary phase as a retainer and triethylamine (5 mM) to the organic mobile phase as an eluter. The two centrifugal partition chromatography separations afforded a total of 162.6 mg of 10‐methoxytetrahydroalstonine ( 1 ) and 296.5 mg of isoreserpiline ( 2 ) in 97% and 95.5% purity, respectively, along with a 400.9 mg mixture of α‐yohimbine and reserpiline ( 3 and 4 ). Further, this mixture was resolved over medium pressure LC using TLC grade silica gel H (average particle size 10 μm), which afforded 160.4 mg of α‐yohimbine ( 3) and 150.2 mg of reserpiline ( 4) in >95% purities. The purity of the isolated antipsychotic alkaloids was analyzed by high‐performance LC and their structures were characterized on the basis of their 1D, 2D NMR and electrospray ionization‐mass spectroscopic data.  相似文献   

17.
A fast, sensitive, and efficient ultra‐fast LC–ESI‐MS/MS method was developed for the simultaneous quantitation of six highly toxic Aconitum alkaloids, that is, aconitine, mesaconitine, hypaconitine, benzoylaconine, benzoylmesaconine, and benzoylhypaconine, in rat plasma after oral administration of crude ethanol extracts from Aconiti kusnezoffii radix by ultrasonic extraction, reflux extraction for 1 h, and reflux extraction for 3 h, respectively. The separation of six Aconitum alkaloids and aminopyrine (internal standard) was performed on an InertSustain® C18 column, and the quantification of the analytes was performed on a 4000Q ultra‐fast LC–MS/MS system with turbo ion spray source in the positive ion and multiple‐reaction monitoring mode. Absolute recoveries ranged within 65.06–85.1% for plasma samples. The intra‐ and interday precision and accuracy of analytes were satisfactory. The methods were validated with sensitivity reaching the lower LOQ for aconitine, mesaconitine, hypaconitine, benzoylaconine, benzoylmesaconine, and benzoylhypaconine, which were 0.025, 0.025, 0.050, 0.025, 0.025, and 0.100 ng/mL, respectively. The method was successfully applied to a pharmacokinetic study of six Aconitum alkaloids in rat plasma after oral administration of crude ethanol extracts from the raw root of Aconitum kusnezoffii Reichb. by three different extraction processes.  相似文献   

18.
Chlorogenic acid and caffeic acid were selected as test samples for separation by the pH‐zone‐refining countercurrent chromatography (CCC). The separation of these test samples was performed with a two‐phase solvent system composed of methyl‐tert‐butyl‐ether/acetonitrile/water at a volume ratio of 4:1:5 v/v/v where trifluoroacetic acid (TFA; 8 mM) was added to the organic stationary phase as a retainer and NH4OH (10 mM) to the aqueous mobile phase as an eluter. Chlorogenic acid was successfully separated from Flaveria bidentis (L.) Kuntze (F. bidentis) and Lonicerae Flos by pH‐zone‐refining CCC, a slightly polar two‐phase solvent system composed of methyl‐tert‐butyl‐ether/acetonitrile/n‐butanol/water at a volume ratio of 4:1:1:5 v/v/v/v was selected where TFA (3 mM) was added to the organic stationary phase as a retainer and NH4OH (3 mM) to the aqueous mobile phase as an eluter. A 16.2 mg amount of chlorogenic acid with the purity of 92% from 1.4 g of F. bidentis, and 134 mg of chlorogenic acid at the purity of 99% from 1.3 g of crude extract of Lonicerae Flos have been obtained. These results suggest that pH‐zone‐refining CCC is suitable for the isolation of the chlorogenic acid from the crude extracts of F. bidentis and Lonicerae Flos.  相似文献   

19.
The evidence for unique effects of eicosapentaenoic acid and docosahexaenoic acid is growing. Further understanding and exploration of their independent effects in the nutraceutical and pharmaceutical industry is calling for the more efficient separation techniques to overcome the equivalent chain length rule of fatty acids. In this study, free eicosapentaenoic and docosahexaenoic acid were successfully separated by pH‐zone‐refining countercurrent chromatography for the first time. The different solvent systems and the influence of retainer and eluter concentration on the separation efficiency were investigated. A two‐phase solvent system composed of n‐heptane/methanol/water (100:55:45, v/v) was selected with 50 mM of trifluoroacetic acid as retainer in the organic phase and 40 mM of ammonium hydroxide as an eluter in the aqueous phase for the separation of 500 mg of free fatty acids from a refined fish oil sample. 79.6 mg of eicosapentaenoic acid and 328.3 mg docosahexaenoic acid were obtained with the purities of 95.5 and 96.9% respectively determined by gas chromatography with mass spectrometry after methyl esterification. The scale‐up separation of 1 g of samples from both refined and crude fish oil after urea complexation were also achieved successfully with a markedly increased concentration 150 mM of retainer, producing satisfactory yields and purities of targets.  相似文献   

20.
A new high‐speed counter‐current chromatography method for semi‐preparative separation and purification of alkaloids from embryo of the seed of Nelumbo nucifera Gaertn was developed by using pH‐gradient elution mode. Diethyl ether was used as the stationary phase of the two‐phase solvent system and Na2HPO4/NaH2PO4 buffer solution with pH values of 7.5 and 7.2 in gradient mode as the mobile phase. Consequently, 33 mg of liensinine, 42 mg of isoliensinine, and 67 mg of neferine were obtained from 200 mg of crude extracts. The purities of them were all over 98% as determined by HPLC area normalization method, and the structures were identified by 1H‐NMR and 13C‐NMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号