首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Protein post‐translational modifications and protein interactions are the central research areas in mass‐spectrometry‐based proteomics. Protein post‐translational modifications affect protein structures, stabilities, activities, and all cellular processes are achieved by interactions among proteins and protein complexes. With the continuing advancements of mass spectrometry instrumentations of better sensitivity, speed, and performance, selective enrichment of modifications/interactions of interest from complex cellular matrices during the sample preparation has become the overwhelming bottleneck in the proteomics workflow. Therefore, many strategies have been developed to address this issue by targeting specific modifications/interactions based on their physical properties or chemical reactivities, but only a few have been successfully applied for systematic proteome‐wide study. In this review, we summarized the highlights of recent developments in the affinity enrichment methods focusing mainly on low stoichiometric protein lipidations. Besides, to identify potential glyoxal modified arginines, a small part was added for profiling reactive arginine sites using an enrichment reagent. A detailed section was provided for the enrichment of protein interactions by affinity purification and chemical cross‐linking, to shed light on the potentials of different enrichment strategies, along with the unique challenges in investigating individual protein post‐translational modification or protein interaction network.  相似文献   

2.
A recently developed proteomic strategy, the “GG‐azide”‐labeling approach, is described for the detection and proteomic analysis of geranylgeranylated proteins. This approach involves metabolic incorporation of a synthetic azido‐geranylgeranyl analog and chemoselective derivatization of azido‐geranylgeranyl‐modified proteins by the “click” chemistry, using a tetramethylrhodamine‐alkyne. The resulting conjugated proteins can be separated by 1‐D or 2‐D and pH fractionation, and detected by fluorescence imaging. This method is compatible with downstream LC‐MS/MS analysis. Proteomic analysis of conjugated proteins by this approach identified several known geranylgeranylated proteins as well as Rap2c, a novel member of the Ras family. Furthermore, prenylation of progerin in mouse embryonic fibroblast cells was examined using this approach, demonstrating that this strategy can be used to study prenylation of specific proteins. The “GG‐azide”‐labeling approach provides a new tool for the detection and proteomic analysis of geranylgeranylated proteins, and it can readily be extended to other post‐translational modifications.  相似文献   

3.
Protein post translational modifications currently represent one of the main challenges with proteomic analysis, due to the important biological role they play within cells. Protein phosphorylation is one of the most important, with several approaches developed for phosphopeptides enrichment and analysis, essential for comprehensive phosphoproteomic analysis. However, the development of new materials for phosphopeptides enrichment may overcome previous drawbacks and improve enrichment of such peptides. In this regard, new magnetic stationary phases based on polydopamine coating and Ti4+ immobilization exploit the potential of IMAC enrichment and couple it with the versatility of magnetic solid phase extraction. In this work the use of such stationary phase was extended from the MALDI proof of concept stage with the development of an optimized method for phosphopeptides enrichment compatible with typical shotgun proteomics experimental workflows. Different loading and elution buffers were tested to improve phosphopeptides recovery and enrichment selectivity. Finally, the analysis of isolated peptides pointed out that polydopamine alone is an ideal support matrix for polar post translational modifications because it enables to reduce unspecific binding and preferentially binds hydrophilic peptides.  相似文献   

4.
Stoichiometric analysis of post‐translational modifications is an emerging strategy for absolute quantification of the fractional abundance of the modification. Herein, a quantitative chemical proteomic workflow for stoichiometric analysis of ubiquitination is reported, named isotopically balanced quantification of ubiquitination (IBAQ‐Ub). The strategy utilizes a new amine‐reactive chemical tag (AcGG‐NHS) that is structurally homologous to the GG remnant of ubiquitin on modified lysine after trypsin cleavage and therefore enables the generation of structurally identical peptides from ubiquitinated and unmodified lysine residues following trypsin digestion and secondary stable isotopic labeling. The strategy is highly robust, sensitive, and accurate with a wide dynamic range using either protein standards or complex cell lysates. Thus, this work provides an efficient chemical proteomics tool for quantitative stoichiometric analysis of ubiquitination signaling pathways.  相似文献   

5.
Protein glycation is the non‐enzymatic condensation of sugars with proteins. Although commonly occurring in both the therapeutic and food/beverage industries, protein glycation has not been the focus of many proteomic investigations. This study aims to establish a reliable mass spectrometric method for screening large tandem mass spectrometric (MSMS) datasets for protein glycation with glucose, lactose and maltose. Control experiments using a standard peptide containing a single glycation site led to the discovery of characteristic neutral loss fragmentation patterns in MSMS analysis for glucose, lactose and maltose condensed with peptides. Valid in both tandem time‐of‐flight (TOFTOF) and quadrupole ion trap time‐of‐flight matrix‐assisted laser desorption/ionization (QIT TOF MALDI) mass spectrometers, these neutral loss signatures were then applied to elucidation of modified peptides from a complex human serum albumin (HSA) digest glycated with each of the proposed sugars. Screening of these large datasets was made possible by specifically designed software solutions that enable the input of detailed user‐defined post‐translational modifications that are not included in the universally available databases such as Unimod. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
7.
蛋白质的糖基化是生物体内重要的蛋白质翻译后修饰之一,但其丰度通常较低,糖基化蛋白质酶解肽段中仅有2%~5%为糖基化肽段,因此,为实现糖基化蛋白质组的深度覆盖分析,对糖基化蛋白质/肽段进行富集是非常必要的。该文对糖基化蛋白质组样品不同富集方法的原理、特点以及最新研究进展进行了综述,同时也对N-糖基化蛋白质组学富集策略的发展前景进行了展望。  相似文献   

8.
Glycosylation is, by far, one of the most common and important post-translational modifications and becomes a target for proteomic research. A key challenge in glycoproteome research is the development of fast and effective enrichment strategies for high-throughput glycosylation analysis. Different kinds of glycan-capturing anchors have been developed and successfully applied to glyco-specific enrichment in large-scale glycosylation identification in the past few years. In this paper, we highlight several examples on various types of enrichment methods that have been utilized to specifically capture glycopeptides/glycoproteins for subsequent mass spectrometric analysis.  相似文献   

9.
Urine sample preparation for proteomic analysis   总被引:1,自引:0,他引:1       下载免费PDF全文
Sample preparation for both environmental and more importantly biological matrices is a bottleneck of all kinds of analytical processes. In the case of proteomic analysis this element is even more important due to the amount of cross‐reactions that should be taken into consideration. The incorporation of new post‐translational modifications, protein hydrolysis, or even its degradation is possible as side effects of proteins sample processing. If protocols are evaluated appropriately, then identification of such proteins does not bring difficulties. However, if structural changes are provided without sufficient attention then protein sequence coverage will be reduced or even identification of such proteins could be impossible. This review summarizes obstacles and achievements in protein sample preparation of urine for proteome analysis using different tools for mass spectrometry analysis. The main aim is to present comprehensively the idea of urine application as a valuable matrix. This article is dedicated to sample preparation and application of urine mainly in novel cancer biomarkers discovery.  相似文献   

10.
Analysis of protein post‐translational modifications using mass spectrometry is an intensive area of proteomic research. This perspective discusses the current state of the field with respect to what can be achieved, the challenges encountered, most notably with modification site assignment, the reliability of the published results, consequences of unreliable data and what is needed to be done to improve the situation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The specific chemical reactivity of thiol groups makes protein cysteines susceptible to reactions with reactive oxygen species (ROS) and reactive nitrogen species (RNS) resulting in the formation of various reversible and irreversible oxidative post-translational modifications (oxPTMs). This review highlights a number of gel-based redox proteomic approaches to detect protein oxPTMs, with particular emphasis on S-nitrosylation, which we believe are currently one of the most accurate way to analyze changes in the redox status of proteins. The information collected in this review relates to the recent progress regarding methods for the enrichment and identification of redox-modified proteins, with an emphasis on fluorescent gel proteomics. Gel-based fluorescent proteomic strategies are low-cost and easy-to-use tools for investigating the thiol proteome and can provide substantial information on redox signaling.  相似文献   

12.
13.
The advances in bioorthogonal ligation methods have provided new opportunities for proteomic analysis of newly synthesized proteins, posttranslational modifications, and specific enzyme families using azide/alkyne-functionalized chemical reporters and activity-based probes. Efficient enrichment and elution of azide/alkyne-labeled proteins with selectively cleavable affinity tags are essential for protein identification and quantification applications. Here, we report the synthesis and comparative analysis of Na?S?O?-cleavable azobenzene-based affinity tags for bioorthogonal chemical proteomics. We demonstrated that ortho-hydroxyl substituent is required for efficient azobenzene-bond cleavage and show that these cleavable affinity tags can be used to identify newly synthesized proteins in bacteria targeted by amino acid chemical reporters as well as their sites of modification on endogenously expressed proteins. The azobenzene-based affinity tags are compatible with in-gel, in-solution, and on-bead enrichment strategies and should afford useful tools for diverse bioorthogonal proteomic applications.  相似文献   

14.
Conformational change and modification of proteins are involved in many cellular functions. However, they can also have adverse effects that are implicated in numerous diseases. How structural change promotes disease is generally not well‐understood. This perspective illustrates how mass spectrometry (MS), followed by toxicological and epidemiological validation, can discover disease‐relevant structural changes and therapeutic strategies. We (with our collaborators) set out to characterize the structural and toxic consequences of disease‐associated mutations and post‐translational modifications (PTMs) of the cytosolic antioxidant protein Cu/Zn‐superoxide dismutase (SOD1). Previous genetic studies discovered >180 different mutations in the SOD1 gene that caused familial (inherited) amyotrophic lateral sclerosis (fALS). Using hydrogen–deuterium exchange with mass spectrometry, we determined that diverse disease‐associated SOD1 mutations cause a common structural defect – perturbation of the SOD1 electrostatic loop. X‐ray crystallographic studies had demonstrated that this leads to protein aggregation through a specific interaction between the electrostatic loop and an exposed beta‐barrel edge strand. Using epidemiology methods, we then determined that decreased SOD1 stability and increased protein aggregation are powerful risk factors for fALS progression, with a combined hazard ratio > 300 (for comparison, a lifetime of smoking is associated with a hazard ratio of ~15 for lung cancer). The resulting structural model of fALS etiology supported the hypothesis that some sporadic ALS (sALS, ~80% of ALS is not associated with a gene defect) could be caused by post‐translational protein modification of wild‐type SOD1. We developed immunocapture antibodies and high sensitivity top‐down MS methods and characterized PTMs of wild‐type SOD1 using human tissue samples. Using global hydrogen–deuterium exchange, X‐ray crystallography and neurotoxicology, we then characterized toxic and protective subsets of SOD1 PTMs. To cap this perspective, we present proof‐of‐concept that post‐translational modification can cause disease. We show that numerous mutations (N➔D; Q➔E), which result in the same chemical structure as the PTM deamidation, cause multiple diseases. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
Histone post‐translational modifications (HPTMs) provide signal platforms to recruit proteins or protein complexes to regulate gene expression. Therefore, the identification of these recruited partners (readers) is essential to understand the underlying regulatory mechanisms. However, it is still a major challenge to profile these partners because their interactions with HPTMs are rather weak and highly dynamic. Herein we report the development of a HPTM dual probe based on DNA‐templated technology and a photo‐crosslinking method for the identification of HPTM readers. By using the trimethylation of histone H3 lysine 4, we demonstrated that this HPTM dual probe can be successfully utilized for labeling and enrichment of HPTM readers, as well as for the discovery of potential HPTM partners. This study describes the development of a new chemical proteomics tool for profiling HPTM readers and can be adapted for broad biomedical applications.  相似文献   

16.
Nitroalkanes react specifically with aldehydes, providing rapid, stable, and chemoselective protein bioconjugation. These nitroalkylated proteins mimic key post‐translational modifications (PTMs) of proteins and can be used to understand the role of these PTMs in cellular processes. Demonstrated here is the substrate scope of this bioconjugation by attaching a variety of tags, such as NMR tags, fluorescent tags, affinity tags, and alkyne tags, to proteins. The structure and enzymatic activity of modified proteins remain conserved after labeling. Notably, the nitroalkane group leads to easy characterization of proteins by mass spectrometry because of its distinct fingerprint pattern. Importantly, the nitro‐alkylated peptides provide a new handle for site‐selective fluorination of peptides, thus installing a specific probe to study peptide–protein interactions by 19F NMR spectroscopy. Furthermore, nitroalkane reagents can be used for the late‐stage diversification of peptides and for the synthesis of peptide staples.  相似文献   

17.
O‐Glycosylation, which refers to the glycosylation of the hydroxyl group of side chains of Serine/Threonine/Tyrosine residues, is one of the most common post‐translational modifications. Compared with N‐linked glycosylation, O‐glycosylation is less explored because of its complex structure and relatively low abundance. Recently, O‐glycosylation has drawn more and more attention for its various functions in many sophisticated biological processes. To obtain a deep understanding of O‐glycosylation, many efforts have been devoted to develop effective strategies to analyze the two most abundant types of O‐glycosylation, i.e. ON‐acetylgalactosamine and ON‐acetylglucosamine glycosylation. In this review, we summarize the proteomics workflows to analyze these two types of O‐glycosylation. For the large‐scale analysis of mucin‐type glycosylation, the glycan simplification strategies including the ‘‘SimpleCell’’ technology were introduced. A variety of enrichment methods including lectin affinity chromatography, hydrophilic interaction chromatography, hydrazide chemistry, and chemoenzymatic method were introduced for the proteomics analysis of ON‐acetylgalactosamine and ON‐acetylglucosamine glycosylation.  相似文献   

18.
Ubiquitylation, the modification of proteins with ubiquitin (Ub), is one of the most versatile post‐translational modifications in eukaryotic cells. Since Ub also serves as its own substrate, proteins can be modified by numerous different Ub chains, in which the individual moieties are linked via one or several of the seven lysines of Ub. Homogeneous Ub chains, in which the moieties are sequentially linked via the same residue, have been most extensively studied. However, due to their restricted availability, the functions of Ub chains linked via K27, K29, or K33 are poorly understood. We have developed an approach that, for the first time, allows the generation of all seven homogeneous Ub chains in large quantities. The potential of our approach is demonstrated by the identification of previously unknown interaction partners of K27‐, K29‐, and K33‐linked Ub chains by affinity‐based proteomics.  相似文献   

19.
Hirudin P6 is a leech‐derived anti‐thrombotic protein which possesses two post‐translational modifications, O‐glycosylation and tyrosine sulfation. In this study we report the ligation‐based synthesis of a library of hirudin P6 proteins possessing homogeneous glycosylation and sulfation modifications. The nature of the modifications incorporated was shown to have a drastic effect on inhibition against both the fibrinogenolytic and amidolytic activities of thrombin and thus highlights a potential means for attenuating the biological activity of the protein.  相似文献   

20.
Nucleosomes carry extensive post‐translational modifications (PTMs), which results in complex modification patterns that are involved in epigenetic signaling. Although two copies of each histone coexist in a nucleosome, they may not carry the same PTMs and are often differently modified (asymmetric). In bivalent domains, a chromatin signature prevalent in embryonic stem cells (ESCs), namely H3 methylated at lysine 4 (H3K4me3), coexists with H3K27me3 in asymmetric nucleosomes. We report a general, modular, and traceless method for producing asymmetrically modified nucleosomes. We further show that in bivalent nucleosomes, H3K4me3 inhibits the activity of the H3K27‐specific lysine methyltransferase (KMT) polycomb repressive complex 2 (PRC2) solely on the same histone tail, whereas H3K27me3 stimulates PRC2 activity across tails, thereby partially overriding the H3K4me3‐mediated repressive effect. To maintain bivalent domains in ESCs, PRC2 activity must thus be locally restricted or reversed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号