首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
A novel and reliable method for determination of five triazole fungicide residues (triadimenol, tebuconazole, diniconazole, flutriafol, and hexaconazol) in traditional Chinese medicine samples was developed using dispersive solid‐phase extraction combined with ultrasound‐assisted dispersive liquid–liquid microextraction before ultra‐high performance liquid chromatography with tandem mass spectrometry. The clean up of the extract was conducted using dispersive solid‐phase extraction by directly adding sorbents into the extraction solution, followed by shaking and centrifugation. After that, a mixture of 400 μL trichloromethane (extraction solvent) and 0.5 mL of the above supernatant was injected rapidly into water for the dispersive liquid–liquid microextraction procedure. The factors affecting the extraction efficiency were optimized. Under the optimum conditions, the calibration curves showed good linearity in the range of 2.0–400 (tebuconazole, diniconazole, and hexaconazole) and 4.0–800 ng/g (triadimenol and flutriafol) with the regression coefficients higher than 0.9958. The limit of detection and limit of quantification for the present method were 0.5–1.1 and 1.8–4.0 ng/g, respectively. The recoveries of the target analytes ranged from 80.2 to 103.2%. The proposed method has been successfully applied to the analysis of five triazole fungicides in traditional Chinese medicine samples, and satisfactory results were obtained.  相似文献   

2.
Green and enhanced extraction of bioactive ingredients from medicinal plants has become a hot research field, and deep eutectic solvents have been considered as a novel kind of sustainable solvents in the extraction process. In this study, hydrogen bond acceptor (choline chloride, etc.) and hydrogen bond donor (l ‐malic acid, etc.) were used to prepare different kinds of deep eutectic solvents to extract coumarins from Cortex Fraxini. The extraction conditions, including the composition and moisture content of deep eutectic solvents, extraction time, and liquid‐solid ratio, were systematically optimized basing on the extraction yield of coumarins. To further investigate the extraction mechanism, Fourier transform infrared spectroscopy was performed, and the microstructures of Cortex Fraxini powders were observed before and after extraction using scanning electron microscope. Results showed that the novel ultrasound‐assisted extraction with conditions of deep eutectic solvent containing betaine/glycerin (1:3), aqueous solution (20%), solid‐liquid ratio (15 mg/mL), and extraction time (30 min) exhibited the best extraction yields for the four target coumarins and much better extraction efficiency than with conventional solvent extractions. This suggests that the new ultrasound‐assisted deep eutectic solvent extraction could be used as a green and high‐efficient approach for extraction of the main coumarins from Cortex Fraxini.  相似文献   

3.
A fast, sensitive, and centrifugeless ultrasound‐assisted emulsification microextraction followed by a high‐performance liquid chromatography method is developed for the determination of some phthalate esters in aqueous samples. In this method, a simple approach is followed to eliminate the centrifugation step in dispersive liquid–liquid microextraction using an organic solvent whose melting point is near the ambient temperature, consumption of the extracting solvent is efficiently reduced, and the overall extraction time was found to be only 7 min. The variables affecting the method are optimized. Under the optimal experimental conditions (75 μL of 1‐undecanol, a flow rate of 2.0 mL/min, and an ultrasound irradiation of 1 min), the proposed method exhibits good preconcentration factors (52–97), low limits of detection (1.0–5.0 ng/mL), and linearities in the range of 5–1500 ng/mL (r 2 ≥ 0.995). Finally, the method is successfully applied to the analysis of phthalate esters in the drinking and river water samples. To study the probable release of the phthalate esters from a polyethylene container into boiling water, the boiling water exposed to the polyethylene container was analyzed by the proposed method.  相似文献   

4.
A new analytical method for the simultaneous determination of trace levels of seven prohibited N‐nitrosamines (N‐nitrosodimethylamine, N‐nitrosoethylmethylamine, N‐nitrosopyrrolidine, N‐nitrosodiethylamine, N‐nitrosopiperidine, N‐nitrosomorpholine, and N‐nitrosodiethanolamine) in cosmetic products has been developed. The method is based on vortex‐assisted reversed‐phase dispersive liquid–liquid microextraction, which allows the extraction of highly polar compounds, followed by liquid chromatography with mass spectrometry. The variables involved in the extraction process were studied to obtain the highest enrichment factor. Under the selected conditions, 75 μL of water as extraction solvent was added to 5 mL of n‐hexane sample solution and assisted by vortex mixing during 30 s to form the cloudy solution. The method was successfully validated showing good linearity (0.5–50 ng/mL), enrichment factors up to 65 depending on the target compound, limits of detection values of 1.8–50 ng/g, and good repeatability (RSD < 9.8%). Finally, the proposed method was applied to different cosmetic samples. Quantitative relative recovery values (80–113%) were obtained, thus showing that matrix effects were negligible. The achieved analytical features of the proposed method, besides of its simplicity and affordability, make it useful to perform the quality control of cosmetic products to ensure the safety of consumers.  相似文献   

5.
A novel ionic‐liquid‐based vortex‐simplified matrix solid‐phase dispersion method using 2,6‐dimethyl‐β‐cyclodextrin was established by ultra high performance liquid chromatography coupled with a photodiode array detector. 2,6‐Dimethyl‐β‐cyclodextrin was first used as a promising adsorbent in this proposed method for simultaneous determination of eight compounds in Gardeniae fructus. These compounds are terpenoids (geniposidic acid, genipin‐1‐β‐D‐gentiobioside, geniposide, 8‐o‐acetyl shanzhiside methyl ester), crocins (crocin‐I, crocin‐II), quinic acid derivatives (chlorogenic acid), and flavonoids (isoquercitrin), respectively. Several parameters were investigated in the adsorption and desorption processes to obtain the optimal conditions, including 2,6‐dimethyl‐β‐cyclodextrin as sorbent, 0.5 mL 100 mM 1‐dodecyl‐3‐methylimidazolium hydrogen sulfate as the extraction solvent, 2:1 of sample/sorbent ratio, grinding for 2 min and vortexing for 60 s. The recoveries of the eight compounds ranged from 96.6 to 100% (<3.50%). The limits of detection and quantification were in the range of 0.02–0.30 and 0.06–1.25  μg/mL, respectively. Meanwhile, a good linearity was attained with r values (>0.9997). The established method showed higher extraction efficiency and less reagent consumption than traditional matrix solid phase dispersion and ultrasonic‐assisted extraction. Hence, it could be applied for sample preparation and analysis of natural products.  相似文献   

6.
A novel and rapid ultrasound‐ and salt‐assisted liquid–liquid extraction coupled with high‐performance liquid chromatography has been optimized by response surface methodology for the determination of oleuropein from olive leaves. Box–Behnken design was used for optimizing the main parameters including ultrasound time (A), pH (B), salt concentration (C), and volume of miscible organic solvent (D). In this technique, a mixture of plant sample and extraction solvent was subjected to ultrasound waves. After ultrasound‐assisted extraction, phase separation was performed by the addition of salt to the liquid phase. The optimal conditions for the highest extraction yield of oleuropein were ultrasound time, 30 min; volume of organic solvent, 2.5 mL; salt concentration, 25% w/v; and sample pH, 4. Experimental data were fitted with a quadratic model. Analysis of variance results show that BC interaction, A2, B2, C2, and D2 are significant model terms. Unlike the conventional extraction methods for plant extracts, no evaporation and reconstitution operations were needed in the proposed technique.  相似文献   

7.
A novel and simple method was established for the extraction and determination of seven compounds in Anemarrhena asphodeloides Bge. using silica gel‐based vortex‐homogenized matrix solid‐phase dispersion and ultra‐high performance liquid chromatography quadrupole‐time of‐flight mass spectrometer. The conditions for the extraction were optimized. Silica gel was used as the dispersant, 50% methanol–water was selected as an elution solvent and the grinding time was 3 min. Compared with the traditional ultrasonic‐assisted extraction, the developed method was rapid and efficient. In order to screen potential antioxidants, extract dealing with the optimized method was applied to a polyamide chromatography column and a D‐101 macroporous resin column. Fr.2.2 showed the highest antioxidant activities with the most content of flavonoid. A total of 25 peaks were identified from the active fraction. A 2,2′‐diphenyl‐1‐picrylhydrazyl ultra‐high performance liquid chromatography coupled with mass spectrometry approach was adopted for the rapid and exact screening and identification of antioxidant compounds. It indicated that flavonoids exhibited potential antioxidant activities. The antioxidant activities of nine monomeric compounds in vivo were tested. Structure–activity relationships were discussed. Five flavonoids with the concentration of 500 µg/mL would reduce the oxidative stress of PC12 cells that were induced with 2,2′‐azobis[2‐methylpropionamidine] dihydrochloride.  相似文献   

8.
A rapid, effective method applying vortex‐assisted liquid–liquid microextraction before ultra‐high performance liquid chromatography with mass spectrometry and evaporative light scattering detection was developed for the analysis of four cucurbitane triterpenoids (momordicoside L, momordicoside K, momordicoside F2, and 3β,7β,25‐trihydroxy cucurbita‐5,23(E )‐dien‐19‐al) in bitter melon juices. Variables affecting the extraction efficiency including different extraction solvents, volume of extraction solvent, salt amount, acid condition, vortex speed and time were optimized thoroughly. Under the optimum conditions, precision was determined by the intra‐ and inter‐day tests in a range of 1.1–5.7% and 2.9–4.0% (RSD), respectively, with recoveries between 95.7 and 106.1%. The calibration curves showed good linearity with square correlation coefficient of 0.9936–0.9991 (evaporative light scattering detection) and 0.9858–0.9989 (MS). The detection limits ranged from 0.8–1.9 ng/mL (MS) to 3–10 ng/mL (evaporative light scattering detection) for these compounds. Enrichment factors of four target compounds were between 27 and 63 times. The proposed method was also used to determine the apparent solvent/water partition coefficients of analytes within the range of 53–120. The developed method can effectively enrich and quantify cucurbitane triterpenoids from bitter melon drinks.  相似文献   

9.
Sun protection is an important part of our lives. UV filters are widely used to absorb solar radiation in sunscreens. However, excess UV filters constitute persistent groups of organic micropollutants present in the environment. An environmentally friendly ionic‐liquid‐based up‐and‐down shaker‐assisted dispersive liquid?liquid microextraction device combined with ultra‐performance liquid chromatography coupled with photodiode‐array detection has been developed to preconcentrate three UV filters (benzophenone, 2‐hydroxy‐4‐methoxybenzophenone, 2,2′‐dihydroxy‐4‐methoxybenzophenone) from field water samples. In this method, the optimal conditions for the proposed extraction method were: 40 μL [C8MIM][PF6] as extraction solvent and 200 μL methanol as disperser solvent were used to extract the UV filters. After up‐and‐down shaking for 3 min, the aqueous solution was centrifuged at 5000 rpm speed, then using microtube to collect the settled extraction solvent and using ultra‐performance liquid chromatography for further analysis. Quantification results indicated that the linear range was 2–1000 ng/mL. The LOD of this method was in the range 0.2–1.3 ng/mL with r2 ≥ 0.9993. The relative recovery in studies of different types of field water samples was in the range 92–120%, and the RSD was 2.3–7.1%. The proposed method was also applied to the analysis of field samples.  相似文献   

10.
A simple and green sodium dodecyl sulfate‐synergistic microwave‐assisted extraction method was developed to extract and determine the iridoids, phenylpropanoids, and lignans in Eucommiae Cortex followed by ultra‐high‐performance liquid chromatography with photodiode array detection. The biodegradable solution (sodium dodecyl sulfate) was used as a promising alternative to organic solvents. The response surface methodology provided the optimum extraction conditions (2 mg/mL sodium dodecyl sulfate, 1100 W microwave power, and 6 min extraction time). The recoveries of three types of components ranged from 95.0 to 105% (RSDs < 5%). The intra‐ and inter‐day precision and accuracy were less than 3.40% and within the range of 97.1‐105%, respectively. Compared with other extraction methods, this newly established method was more efficient and environmental friendly. The results demonstrated that sodium dodecyl sulfate‐synergistic microwave‐assisted extraction followed by ultra‐high‐performance liquid chromatography with photodiode array method was applicable for the simultaneous extraction and determination of these three types of compounds for quality evaluation of Eucommiae Cortex.  相似文献   

11.
Simultaneous derivatization and air‐assisted liquid–liquid microextraction using an organic that is solvent lighter than water has been developed for the extraction of some parabens in different samples with the aid of a newly designed device for collecting the extractant. For this purpose, the sample solution is transferred into a glass test tube and a few microliters of acetic anhydride (as a derivatization agent) and p‐xylene (as an extraction solvent) are added to the solution. After performing the procedure, the homemade device consists of an inverse funnel with a capillary tube placed into the tube. In this step, the collected extraction solvent and a part of the aqueous solution are transferred into the device and the organic phase indwells in the capillary tube of the device. Under the optimal conditions, limits of detection and quantification for the analytes were obtained in the ranges of 0.90–2.7 and 3.0–6.1 ng/mL, respectively. The enrichment and enhancement factors were in the ranges of 370–430 and 489–660, respectively. The method precision, expressed as the relative standard deviation, was within the range of 4–6% (= 6) and 4–9% (= 4) for intra‐ and interday precisions, respectively. The proposed method was successfully used for the determination of methyl‐, ethyl‐, and propyl parabens in cosmetic, hygiene and food samples, and personal care products.  相似文献   

12.
A method based on ultrasound‐assisted liquid–liquid extraction and high‐performance liquid chromatography has been optimized for the determination of six polybrominated diphenyl ether congeners. The optimal condition relevant to the extraction was first investigated, more than 98.7 ± 0.7% recovery was achieved with dichloromethane as extractant, 5 min extraction time, and three cycles of ultrasound‐assisted liquid–liquid extraction. Then multiple function was employed to optimize polybrominated diphenyl ether detection conditions with overall resolution and chromatography signal area as the responses. The condition chosen in this experiment was methanol/water 93:7 v/v, flow rate 0.80 mL/min, column temperature 30.0°C. The optimized technique revealed good linearity (R2 > 0.9962 over a concentration range of 1–100 μg/L) and repeatability (relative standard deviation < 6.3%). Furthermore, the detection limit (S/N = 3) of the method were ranged from 0.02 to 0.13 μg/L and the quantification limit (S/N = 10) ranged from 0.07 to 0.35 μg/L. Finally, the proposed method was applied to spiked samples and satisfactory results were achieved. These results indicate that ultrasound‐assisted liquid–liquid extraction coupled with high‐performance liquid chromatography was effective to identify and quantify the complex polybrominated diphenyl ethers in effluent samples.  相似文献   

13.
An extraction method based on dispersive nanomaterial ultrasound‐assisted microextraction was used for the preconcentration of carbofuran and propoxur insecticides in water samples prior to high‐performance liquid chromatography with UV detection. ZnS:Ni nanoparticles were synthesized based on the reaction of the mixture of zinc acetate and nickel acetate with thioacetamide in aqueous media and then loaded on activated carbon (ZnS:Ni‐AC). Different methods were used for recognizing the properties of ZnS:Ni‐AC and then this nanomaterial was used for extraction of carbamate insecticide as new adsorbent. The influence of variables on the extraction method (such as amount of adsorbent (mg: NiZnS‐AC), pH and ionic strength of sample solution, vortex and ultrasonic time (min), ultrasound temperature and desorption volume (mL) was investigated by a screening 27–4 Plackett–Burman design. Then the significant variables were optimized by using a central composite design combined with a desirability function. At optimum conditions, this method had linear response >0.0060–10 μg/mL with detection limit 0.0015 μg/mL and relative standard deviations <5.0% (n = 3).  相似文献   

14.
A new version of dispersive liquid–liquid microextraction, namely, cyclodextrin‐assisted dispersive liquid–liquid microextraction, with subsequent sweeping micellar electrokinetic chromatography has been developed for the preconcentration and sensitive detection of carbamazepine and clobazam. α‐Cyclodextrin and chloroform were used as the dispersive agent and extraction solvent, respectively. After the extraction, carbamazepine and clobazam were analyzed using micellar electrokinetic chromatography with ultraviolet detection. The detection sensitivity was further enhanced using the sweeping technique. Under optimal extraction and stacking conditions, the calibration curves of carbamazepine and clobazam were linear over a concentration range of 2.0–200.0 ng/mL. The method detection limits at a signal‐to‐noise ratio of 3 were 0.6 and 0.5 ng/mL with sensitivity enhancement factors of 3575 and 4675 for carbamazepine and clobazam, respectively. This developed method demonstrated high sensitivity enhancement factors and was successfully applied to the determination of carbamazepine and clobazam in human urine samples. The precision and accuracy for urine samples were less than 4.2 and 6.9%, respectively.  相似文献   

15.
In this study, for the first time, salt‐assisted liquid–liquid extraction was performed in a microchannel system. The proposed design is based on the increase of contact surface area between target analytes and extracting phase during the sample and extracting phase transfer in microchannel. In this method, first sample solution, extracting solvent, and salt were mixed by stirrer and simultaneously delivered into a microchannel using a syringe pump. In order to optimize the influential parameters on the extraction efficiency of the proposed method, zidovudine and tenofovir disoproxil fumarate were selected as model analytes. The main parameters such as extracting solvent and its volume, salt amount, pH of sample solution, and microchannel shape, length, and its inner diameter were investigated and optimized. Under the optimized conditions, the proposed method was linear in the range of 0.1–30 µg/mL and R2 coefficients were equal to 0.9922 and 0.9947 for zidovudine and tenofovir disoproxil fumarate, respectively. Extraction efficiency of the proposed method was compared with conventional salt‐assisted liquid–liquid extraction. The results show that the proposed design has higher extraction efficiency than conventional salt‐assisted liquid–liquid extraction. Finally, the proposed method was successfully applied for the determination of zidovudine and tenofovir disoproxil fumarate in plasma samples.  相似文献   

16.
We describe the preparation, characterization, and application of a composite film adsorbent based on blended agarose‐chitosan‐multiwalled carbon nanotubes for the preconcentration of selected nonsteroidal anti‐inflammatory drugs in aqueous samples before determination by high performance liquid chromatography with ultraviolet detection. The composite film showed a high surface area (4.0258 m2/g) and strong hydrogen bonding between the multiwalled carbon nanotubes and agarose/chitosan matrix, which prevent adsorbent deactivation and ensure long‐term stability. Several parameters, such as sample pH, addition of salt, extraction time, desorption solvent, and concentration of multiwalled carbon nanotubes in the composite film were optimized using a one‐factor‐at‐time approach. The optimum extraction conditions obtained were as follows: isopropanol as conditioning solvent, 10 mL of sample solution at pH 2, extraction time of 30 min, stirring speed of 600 rpm, 100 μL of isopropanol as desorption solvent, desorption time of 5 min under ultrasonication, and 0.4% w/v of composite film. Under the optimized conditions, the calibration curve showed good linearity in the range of 1–500 ng/mL (r2 = 0.997–0.999), and good limits of detection (0.89–8.05 ng/mL) were obtained with good relative standard deviations of < 4.59% (n = 3) for the determination of naproxen, diclofenac sodium salt, and mefenamic acid drugs.  相似文献   

17.
A readily applicable method was developed to determine the concentration level of zaltoprofen, a non‐steroidal antiinflammatory drug from the propionic acid family, in human plasma. This method is based on manual‐shaking‐assisted dispersive liquid–liquid microextraction coupled with liquid chromatography with ultraviolet detection. Factors affecting the extraction efficiency were screened and optimized by experimental design using fractional factorial and central composite designs, respectively. Optimal conditions were: 220 μL of C2H4Cl2 (extraction solvent), 5 mL of 3.75% w/v NaCl aqueous solution at pH 2.0, and manual shaking for 13 s (65 times). The resulting extraction method yielded a reasonable enrichment factor of 18.0 (±0.6, = 3) and extraction recovery of 86.0% (±3.3%, = 3). The established method was validated for selectivity, linearity, precision, accuracy, matrix effect, recovery, dilution integrity, and stability, and it met the acceptable criteria for all of the tested parameters. Specifically, the method was linear in the range of 0.16–50.0 mg/L, precise (< 8.8% RSD), accurate (–7.5–5.6% deviation), and showed negligible matrix effects (96.1–106.4%) with high absolute recovery (94.5–97.7%). Compared with previous methods involving labor‐intensive liquid–liquid extraction or non‐specific protein precipitation, our method allows the simple, rapid, and efficient determination of zaltoprofen using the most affordable analytical instrument, liquid chromatography with ultraviolet detection.  相似文献   

18.
A rapid, efficient, and green sample preparation method has been developed to extract eight active ingredients (gallic acid, catechins, epicatechin, polydatin, 2,3,5,4′‐tetrahydroxystilbene‐2‐O‐β‐d ‐glucoside, resveratrol, emodin, and physcion) in radix polygoni multiflori by miniaturized matrix solid‐phase dispersion microextraction. Simple and sensitive ultra high performance liquid chromatography combined with ultraviolet detection has been applied to analyze the multiple compounds. The best results were obtained by adding 25 mg sample into 25 mg adsorbent and grinding for 2 min with disorganized silica as adsorbent and 1 mL 150 mM 1‐dodecyl‐3‐methylimidazolium bromide as a green eluting solvent. Good linearity (r> 0.998) for each analyte was obtained by this method. The intra‐day and inter‐day precision (RSD) were both below 5.31%, and the recoveries of the analytes ranged from 93.3 to 100.0%. This simple miniaturized matrix solid‐phase dispersion microextraction method for analyzing the compounds in radix polygoni multiflori needs a short time and requires little sample and reagent. Thus, this method is far more eco‐friendly and efficient than traditional extraction methods (reflux and ultrasound‐assisted extraction). The present investigation provided a promising method for the fast preparation and discrimination of chemical differences in crude and processed radix polygoni multiflori.  相似文献   

19.
Indole alkaloids are the main bioactive/toxic components in Gelsemium elegans Benth. To determine the distribution and contents of indole alkaloids in its different medicinal parts, a novel and rapid method using ultra‐high performance LC (UPLC) with MS/MS has been established and validated with an optimized ultrasound/microwave‐assisted extraction method. Four constituents, namely, humantenidine, humantenmine, gelsemine, and koumine, were simultaneously determined in 6 min. Chromatographic separation was achieved on an ultra‐high performance LC BEH C18 column with a gradient mobile phase consisting of methanol and water (containing 0.1% formic acid both in methanol and water) at a flow rate of 0.3 mL/min. The detection was performed on a triple quadrupole electrospray MS/MS by positive ion multiple‐reaction monitoring mode. All the analytes showed good linearity (r ≥ 0.9934) within a concentration range from 0.1–25 μg/mL with a LOQ of 25–50 ng/mL. The overall intra‐ and intervariations of four components were <4.7% with an accuracy of 97.3–101.3%. The analysis results showed that there were remarkable differences in the distribution and contents of four chemical markers in the roots, stems, and leaves of G. elegans Benth. The findings can provide necessary and meaningful information for the rational utilization of its resources.  相似文献   

20.
A high‐throughput method based on ultrasonic‐assisted extraction, 96‐well plate thin‐film microextraction was established to determinate 18 antibiotics in animal feed. In this method, the extraction was implemented by ultrasonic‐assisted extraction for 30 min with disodium ethylenediaminetetraacetic acid‐McIlvaine buffer (pH 5) containing 6% sodium chloride w/v, purified by thin‐film microextraction and combined with 96‐well plate system to improve the efficiency. Optimization of thin‐film microextraction conditions was performed by methods of single factor and response surface, and finalized as: condition time: 20 min; adsorption time: 55 min; washing time: 5 s with water; desorption time: 30 min with acetonitrile/water (8:2, v/v) containing 0.1% formic acid v/v. Evaluation of different extractive phases showed that polystyrene‐divinylbenzene‐polyacrylonitrile was the optimum coating. The analysis was performed by ultra‐high performance liquid chromatography with tandem mass spectrometry. Recovery, inter‐ and intraday precision, linearity, limit of detection, and quantitation were evaluated. The average recoveries of 18 antibiotics were 66.6–93.5% at three spiked levels, intraday precision was 1–8.4%, and interday precision was 3.0–16.4%. The linearity was good for r> 0.99. Limits of detection and quantification were found in the range of 1–14 and 4–48 µg/kg, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号