首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report tandem alkyl-arylations and phosphonyl-arylations of vinyl ureas by way of a photocatalytic radical-polar crossover mechanism. Addition of photoredox-generated radicals to the alkene forms a new C−C or C−P bond and generates a product radical adjacent to the urea function. Reductive termination of the photocatalytic cycle generates an anion that undergoes a polar Truce–Smiles rearrangement, forming a C−C bond. The reaction is successful with a range of α-fluorinated alkyl sodium sulfinate salts and diarylphosphine oxides as radical precursors, and the conformationally accelerated Truce–Smiles rearrangement is not restricted by the electronic nature of the migrating aromatic ring. Formally the reaction constitutes an α,β-difuctionalisation of a carbon–carbon double bond, and proceeds under mild conditions with visible light and a readily available organic photocatalyst. The products are α,α-diaryl alkylureas typically functionalized with F or P substituents that may be readily converted into α,α-diaryl alkylamines.  相似文献   

2.
A light-mediated Truce–Smiles arylative rearrangement is described that proceeds in the absence of any photocatalyst. The protocol creates two C−C bonds from simple starting materials, with the installation of an aryl ring and a difluoroacetate moiety across unactivated alkenes. The reaction proceeds via a radical mechanism, utilizing a light-mediated reduction of ethyl bromodifluoroacetate by N,N,N′,N′-tetramethylethylenediamine (TMEDA) to set up intermolecular addition to an unactivated alkene, followed by Truce–Smiles rearrangement.  相似文献   

3.
A new benzyne transformation is described that affords versatile biaryl structures without recourse to transition‐metal catalysis or stoichiometric amounts of organometallic building blocks. Aryl sulfonamides add to benzyne upon fluoride activation, and then undergo an aryl Truce–Smiles rearrangement to afford biaryls with sulfur dioxide extrusion. The reaction proceeds under simple reaction conditions and has excellent scope for the synthesis of sterically hindered atropisomeric biaryl amines.  相似文献   

4.
A straightforward synthetic method for the construction of benzofuro[2,3‐b]pyrrol‐2‐ones by a novel domino reaction through a radical addition/[3,3]‐sigmatropic rearrangement/cyclization/lactamization cascade has been developed. The domino reaction of O‐phenyl‐conjugated oxime ether with an alkyl radical allows the construction of two heterocycles with three stereogenic centers as a result of the formation of two C?C bonds, a C?O bond, and a C?N bond in a single operation, leading to pyrrolidine‐fused dihydrobenzofurans, which are not easily accessible by existing synthetic methods. Furthermore, asymmetric synthesis of benzofuro[2,3‐b]pyrrol‐2‐one derivatives through a diastereoselective radical addition reaction to a chiral oxime ether was also developed.  相似文献   

5.
A novel, manganese‐catalyzed oxidative azidation of cyclobutanols is described. A wide range of primary, secondary, and tertiary alkyl azides were generated in synthetically useful yields and exclusive regioselectivity. Aside from linear alkyl azides, otherwise elusive medium‐sized cyclic azides were also readily prepared. Preliminary mechanistic studies reveal that the reaction likely proceeds by a radical‐mediated C? C bond cleavage/C? N3 bond formation pathway.  相似文献   

6.
Through the use of [Ru(bpy)3Cl2] (bpy=2,2′‐bipyridine) and [Ir(ppy)3] (ppy=phenylpyridine) as photocatalysts, we have achieved the first example of visible‐light photocatalytic radical alkenylation of various α‐carbonyl alkyl bromides and benzyl bromides to furnish α‐vinyl carbonyls and allylbenzene derivatives, prominent structural elements of many bioactive molecules. Specifically, this transformation is regiospecific and can tolerate primary, secondary, and even tertiary alkyl halides that bear β‐hydrides, which can be challenging with traditional palladium‐catalyzed approaches. The key initiation step of this transformation is visible‐light‐induced single‐electron reduction of C? Br bonds to generate alkyl radical species promoted by photocatalysts. The following carbon? carbon bond‐forming step involves a radical addition step rather than a metal‐mediated process, thereby avoiding the undesired β‐hydride elimination side reaction. Moreover, we propose that the Ru and Ir photocatalysts play a dual role in the catalytic system: they absorb energy from the visible light to facilitate the reaction process and act as a medium of electron transfer to activate the alkyl halides more effectively. Overall, this photoredox catalysis method opens new synthetic opportunities for the efficient alkenylation of alkyl halides that contain β‐hydrides under mild conditions.  相似文献   

7.
A facile and simple organocatalytic procedure to generate optically active 6‐alkyl‐ and 6‐aryl‐substituted bicyclo[2.2.2]oct‐5‐en‐2‐ones is presented. The reaction is catalysed by a 9‐amino‐9‐deoxyepiquinine trifluoroacetic acid salt, which activates α,β‐unsaturated cyclic ketones for the 1,4‐addition of β‐keto benzothiazoyl sulfones in a stereoselective fashion. Subsequent intramolecular aldol reaction and Smiles rearrangement gives rise to important optically active bicycles, which are a common motif in natural products, ligands in asymmetric catalysis and substrates for Cope rearrangements, photochemical reactions, radical cyclisations and metathesis. Different bicyclic structures were obtained by utilisation of various cyclic enones or by performing ring‐expanding reactions. Furthermore, two possible mechanistic pathways are outlined and discussed.  相似文献   

8.
A consecutive radical addition‐coupling reaction involving dithioester is applied to produce thermodegradable multisegmented polymer using α,ω‐dibromo polymer as precursor. The macroradical generated by single electron transfer process promoted by Cu/ligand from α,ω‐dibromo polymer can efficiently add to ethyl dithiobenzoate, which results intermediate adduct radical. The in situ formed adduct radical immediately undergoes crosscoupling reaction with macroradical, generating segmented polymer bridged with C? S bond. The consecutive radical addition‐coupling reaction generates multisegmented polymer linked by C? S bond following step‐growth mechanism. The multisegmented polymer can be thermodegraded in the presence of hydrogen atom donor or air. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
We have found that an organic molecule as simple as p‐anisaldehyde efficiently catalyzes the intermolecular atom‐transfer radical addition (ATRA) of a variety of haloalkanes onto olefins, one of the fundamental carbon–carbon bond‐forming transformations in organic chemistry. The reaction requires exceptionally mild reaction conditions to proceed, as it occurs at ambient temperature and under illumination by a readily available fluorescent light bulb. Initial investigations support a mechanism whereby the aldehydic catalyst photochemically generates the reactive radical species by sensitization of the organic halides by an energy‐transfer pathway.  相似文献   

10.
Inexpensive cobalt catalysts derived from N‐heterocylic carbenes (NHC) allowed efficient catalytic C? H bond arylations on heteroaryl‐substituted arenes with widely available aryl chlorides, which set the stage for the preparation of sterically hindered tri‐ortho‐substituted biaryls. Likewise, challenging direct alkylations with β‐hydrogen‐containing primary and even secondary alkyl chlorides proceeded on pyridyl‐ and pyrimidyl‐substituted arenes and heteroarenes. The cobalt‐catalyzed C? H bond functionalizations occurred efficiently at ambient reaction temperature with excellent levels of site‐selectivities and ample scope. Mechanistic studies highlighted that electron‐deficient aryl chlorides reacted preferentially, while the arenes kinetic C? H bond acidity was found to largely govern their reactivity.  相似文献   

11.
The photocatalytic preparation of aminoalkylated heteroarenes from haloalkylamides via a 1,4‐aryl migration from nitrogen to carbon, conceptually analogous to a radical Smiles rearrangement, is reported. This method enables the substitution of amino groups in heteroaromatic compounds with aminoalkyl motifs under mild, iridium(III)‐mediated photoredox conditions. It provides rapid access to thienoazepinone, a pharmacophore present in multiple drug candidates for potential treatment of different conditions, including inflammation and psychotic disorders.  相似文献   

12.
The first example of a biocatalytic [2,3]‐sigmatropic rearrangement reaction involving allylic sulfides and diazo reagents (Doyle–Kirmse reaction) is reported. Engineered variants of sperm whale myoglobin catalyze this synthetically valuable C?C bond‐forming transformation with high efficiency and product conversions across a variety of sulfide substrates (e.g., aryl‐, benzyl‐, and alkyl‐substituted allylic sulfides) and α‐diazo esters. Moreover, the scope of this myoglobin‐mediated transformation could be extended to the conversion of propargylic sulfides to give substituted allenes. Active‐site mutations proved effective in enhancing the catalytic efficiency of the hemoprotein in these reactions as well as modulating the enantioselectivity, resulting in the identification of the myoglobin variant Mb(L29S,H64V,V68F), which is capable of mediating asymmetric Doyle–Kirmse reactions with an enantiomeric excess up to 71 %. This work extends the toolbox of currently available biocatalytic strategies for the asymmetric formation of carbon–carbon bonds.  相似文献   

13.
The use of diazonium salts for aryl radical generation and C? H arylation processes has been known since 1896 when Pschorr first used the reaction for intramolecular cyclizations. Meerwein developed it further in the early 1900s into a general arylation method. However, this reaction could not compete with the transition‐metal‐mediated formation of C(sp2)? C(sp2) bonds. The replacement of the copper catalyst with iron and titanium compounds improved the situation, but the use of photocatalysis to induce the one‐electron reduction and activation of the diazonium salts is even more advantageous. The first photocatalyzed Pschorr cyclization was published in 1984, and just last year a series of papers described applications of photocatalytic Meerwein arylations leading to aryl–alkene coupling products. In this Minireview we summarize the origins of this reaction and its scope and applications.  相似文献   

14.
With a ruthenium–porphyrin catalyst, alkyl diazomethanes generated in situ from N‐tosylhydrazones efficiently underwent intramolecular C(sp3)? H insertion of an alkyl carbene to give substituted tetrahydrofurans and pyrrolidines in up to 99 % yield and with up to 99:1 cis selectivity. The reaction displays good tolerance of many functionalities, and the procedure is simple without the need for slow addition with a syringe pump. From a synthetic point of view, the C? H insertion of N‐tosylhydrazones can be viewed as reductive coupling between a C?O bond and a C? H bond to form a new C? C bond, since N‐tosylhydrazones can be readily prepared from carbonyl compounds. This reaction was successfully applied in a concise synthesis of (±)‐pseudoheliotridane.  相似文献   

15.
Palladium (Pd)‐catalyzed radical oxidative C?H carbonylation of alkanes is a useful method for functionalizing hydrocarbons, but there is still a lack of understanding of the mechanism, which restricts the application of this reaction. In this work, density functional theory (DFT) calculations were carried out to study the mechanism for a Pd‐catalyzed radical esterification reaction. Two plausible reaction pathways have been proposed and validated by DFT calculations. The computational results reveal that the generated alkyl radical prefers to add to the carbon monoxide (CO) molecule to form a carbonyl radical before bonding with the Pd species. Radical addition onto Pd followed by CO migratory insertion was unfavorable owing to the high energy barrier of the migratory insertion step. The regioselectivity of the C(sp3)?H carbonylation was also investigated by DFT. The results show that the regioselectivity is controlled by both the bond dissociation energy of the reacting C?H bond and the stability of the corresponding generated carbon radical. Competitive side reactions also affected the yield and regioselectivity owing to the rapid consumption of the stable radical intermediate.  相似文献   

16.
The union of photoredox and nickel catalysis has resulted in a renaissance in radical chemistry as well as in the use of nickel‐catalyzed transformations, specifically for carbon–carbon bond formation. Collectively, these advances address the longstanding challenge of late‐stage cross‐coupling of functionalized alkyl fragments. Empowered by the notion that photocatalytically generated alkyl radicals readily undergo capture by Ni complexes, wholly new feedstocks for cross‐coupling have been realized. Herein, we highlight recent developments in several types of alkyl cross‐couplings that are accessible exclusively through this approach.  相似文献   

17.
A novel, manganese‐catalyzed oxidative azidation of cyclobutanols is described. A wide range of primary, secondary, and tertiary alkyl azides were generated in synthetically useful yields and exclusive regioselectivity. Aside from linear alkyl azides, otherwise elusive medium‐sized cyclic azides were also readily prepared. Preliminary mechanistic studies reveal that the reaction likely proceeds by a radical‐mediated C C bond cleavage/C N3 bond formation pathway.  相似文献   

18.
The Smiles rearrangement is the intramolecular nucleophilic aromatic substitution reaction incorporating a heteroatom as the nucleophilic component and an activated electrophilic arene. One particular variation--the Truce-Smiles rearrangement--utilises a carbon-based nucleophile and an electrophilic arene which does not require additional activation. Such a variation generates a new carbon-carbon bond and the synthetic utility of this relatively under-utilised rearrangement is discussed in this tutorial review.  相似文献   

19.
The catalytic asymmetric Diels–Alder reaction of quinone imine ketals with diene carbamates catalyzed by axially chiral dicarboxylic acids is reported herein. A variety of primary and secondary alkyl‐substituted quinone derivatives which have not been applied in previous asymmetric quinone Diels–Alder reactions could be employed using this method. More importantly, we succeeded in developing a strategy to divert the reaction site in unsymmetrical 3‐alkyl quinone imine ketals from the inherently favored unsubstituted C?C bond to the disfavored alkyl‐substituted C?C bond.  相似文献   

20.
Abstract

Comprehensive studies of photoinduced addition of phosphorus trihalides to unsaturated compounds, i.e. alkenes, alkynes, alkadienes, and enynes, were carried out. The addition of phosphorus trihalides to unsaturated C?C bonds is proved to be a radical chain process, the total reaction irate increasing with the increase of electron density on the unsaturated C?C bond. The photoinduced reaction of alkenes with PRr3 goes via Br atom attack on the least substituted C-atom of an unsaturated C?C bond and mainly results in the formation or dibromophosphines with a phosphorus atom in the second position of the carbon chain ?(1–2)-addition. In the case of polysubstituted alkenes an alternative direction of the reaction is realized, namely the photoinduced substitutional dibromophosphination to alkyl group. The reaction with alkynes results only in the formation of the products of (1–2)-addition. The Regioselectivity of the addition of phosphorous trihalide fragments to the substrate containing a heteroatom at the unsaturated C?C bond is determined by the stability of the secondary halogenoalkenyl(alky1) radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号