首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A qualitative and quantitative analytical method was developed for the simultaneous determination of Δ9‐tetrahydrocannabinol (THC), 11‐hydroxy‐Δ9‐tetrahydrocannabinol (11‐OH‐THC) and l1‐nor‐9‐carboxy‐Δ9‐tetrahydrocannabinol (THC‐COOH) in whole blood. The samples were prepared by solid‐phase extraction followed by ultra‐performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) analysis using positive ion electrospray ionization and multiple reaction monitoring. The chromatographic separation was performed with an Acquity UPLC® HSS T3 (50 × 2.1 mm i.d., 1.8 µm) reversed‐phase column using a methanol/2 mM ammonium formate (formic acid 0.1%) gradient in a total run time of 9.5 min. MS/MS detection was achieved with two precursor‐product ion transitions per substance. The method was fully validated, including selectivity and capacity of identification, according to the identification criteria (two transitions per substance, signal‐to‐noise ratio, relative retention time and ion ratio) without the presence of interferences, limit of detection (0.2 µg/L for THC and 0.5 µg/L for 11‐OH‐THC and THC‐COOH), limit of quantitation (0.5 µg/L for all cannabinoids), recovery (53–115%), carryover, matrix effect (34‐43%), linearity (0.5‐100 µg/L), intra‐assay precision (CV < 10% for the relative peak area ratios and <0.1% for the relative retention time), inter‐assay accuracy (mean relative error <10%) and precision (CV <11%). The method has already been successfully used in proficiency tests and subsequently applied to authentic samples in routine forensic analysis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
This study describes the synthesis and application of a magnetic amino‐functionalized hollow silica‐titania microsphere as a new sorbent for magnetic dispersive micro‐solid phase extraction of selected pesticides in coffee bean samples. The sorbent was fully characterized by Fourier‐transform infrared spectroscopy, field emission scanning electron microscopy, transition electron microscopy, energy‐dispersive X‐ray spectroscopy, and vibrating sample magnetometry techniques. Significant extraction parameters affecting the proposed method, such as extraction time, sorbent amount, sample solution pH, salt amount, and desorption conditions (desorption solvent and time) were investigated and optimized. All the figures of merits were validated in coffee bean samples under the matrix‐matched calibration method. Linear dynamic ranges were 5–250 µg/kg with the determination coefficients (R2) > 0.9980. The limits of detection for the pesticides of chlorpyrifos, malathion, hexaconazole, and atrazine were 1.42, 1.43, 1.35, and 1.33 µg/kg, respectively. Finally, the method was successfully applied for the determination of the pesticides in green and roasted coffee bean samples, and the obtained recoveries were in the range of 74–113% for spiked samples. The prepared sorbent could be used for the magnetic dispersive micro‐solid phase extraction of pesticides in the plant‐derived food matrix.  相似文献   

3.
In this work, a simple, fast, sensitive, and environmentally friendly method was developed for preconcentration and quantitative measurement of bisphenol A in water samples using gas chromatography with mass spectrometry. The preconcentration approach, namely biosorption‐based dispersive liquid‐liquid microextraction with extractant removal by magnetic nanoparticles was performed based on the formation of microdroplet of rhamnolipid biosurfactant throughout the aqueous samples, which accelerates the mass transfer process between the extraction solvent and sample solution. The process is then followed by the application of magnetic nanoparticles for easy retrieval of the analyte‐containing extraction solvent. Several important variables were optimized comprehensively including type of disperser solvent and desorption solvent, rhamnolipid concentration, volume of disperser solvent, amount of magnetic nanoparticles, extraction time, desorption time, ionic strength, and sample pH. Under the optimized microextraction and gas chromatography with mass spectrometry conditions, the method demonstrated good linearity over the range of 0.5–500 µg/L with a coefficient of determination of R= 0.9904, low limit of detection (0.15 µg/L) and limit of quantification (0.50 µg/L) of bisphenol A, good analyte recoveries (84–120%) and acceptable relative standard deviation (1.8–14.9%, = 6). The proposed method was successfully applied to three environmental water samples, and bisphenol A was detected in all samples.  相似文献   

4.
The applicability of CZE with mass spectrometric detection for the determination of four chlorine species, namely chloride and three stable chlorine oxyanions, was studied. The main aspects of the proper selection of BGE and sheath liquid for the CE‐MS determinations of anions with high mobility were demonstrated, pointing out the importance of pH and the mobility of the anion in the BGE. The possibility of using uncoated fused silica capillary and common electrolytes for the separation was shown and the advantage of using extra pressure at the inlet capillary end was also presented. The linear range was found to be 1–100 µg/mL for ClO3? and ClO4?, 5–500 µg/mL for ClO2?, and 25–500 µg/mL for Cl?, but the sensitivity can be greatly improved if larger sample volume is injected and electrostacking effect is utilized. The LOD for ClO3? in drinking water was 6 ng/mL, when very large sample volume was injected (10 000 mbar·s was applied).  相似文献   

5.
A sensitive and specific ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS‐MS) method for quantification of a newly developed anticancer agent NPD‐103 has been established. An aliquot of human plasma sample (200 µL) was spiked with 13C‐labeled paclitaxel (internal standard) and extracted with 1.3 mL of tert‐butyl methyl ether. NPD‐103 was quantitated on a C18 column with methanol–0.1% formic acid (75:25, v/v) as mobile phase using UPLC‐MS‐MS operating in positive electrospray ionization mode with a total run time of 3.0 min. For NPD‐103 at the concentrations of 1.0, 5.0 and 10.0 µg/mL in human plasma, the absolute extraction recoveries were 95.58, 102.43 and 97.77%, respectively. The linear quantification range of the method was 0.1–20.0 µg/mL in human plasma with linear correlation coefficients greater than 0.999. The intra‐ and inter‐day accuracy for NPD‐103 at 1.0, 5.0 and 10.0 µg/mL levels in human plasma fell into the ranges of 95.29–100.00% and 91.04–94.21%, and the intra‐ and inter‐day precisions were in the ranges of 8.96–11.79% and 7.25–10.63%, respectively. This assay is applied to determination of half‐life of NPD‐103 in human plasma. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
A new facile magnetic micro‐solid‐phase extraction coupled to gas chromatography and mass spectrometry detection was developed for the extraction and determination of selected antidepressant drugs in biological fluids using magnetite‐MCM‐41 as adsorbent. The synthesized sorbent was characterized by several spectroscopic techniques. The maximum extraction efficiency for extraction of 500 μg/L antidepressant drugs from aqueous solution was obtained with 15 mg of magnetite‐MCM‐41 at pH 12. The analyte was desorbed using 100 μL of acetonitrile prior to gas chromatography determination. This method was rapid in which the adsorption procedure was completed in 60 s. Under the optimized conditions using 15 mL of antidepressant drugs sample, the calibration curve showed good linearity in the range of 0.05–500 μg/L (r 2 = 0.996–0.999). Good limits of detection (0.008–0.010 μg/L) were obtained for the analytes with good relative standard deviations of <8.0% (n  = 5) for the determination of 0.1, 5.0, and 500.0 μg/L of antidepressant drugs. This method was successfully applied to the determination of amitriptyline and chlorpromazine in plasma and urine samples. The recoveries of spiked plasma and urine samples were in the range of 86.1–115.4%. Results indicate that magnetite micro‐solid‐phase extraction with gas chromatography and mass spectrometry is a convenient, fast, and economical method for the extraction and determination of amitriptyline and chlorpromazine in biological samples.  相似文献   

7.
A novel magnetic mesoporous silica material was synthesized and used as the sorbent for the magnetic solid‐phase microextraction of diazinon and malathion before their quantification by high‐performance liquid chromatography with UV detection. The sorbent was synthesized by a surfactant‐templated one‐pot sol–gel procedure using SiO2‐coated Fe3O4 as the magnetic support, cetyltrimethylammonium bromide as the template and tetraethyl orthosilicate as the silicon source. The characteristics of the prepared sorbent were investigated using Fourier transform infrared spectroscopy, scanning electron microscopy, and X‐ray diffraction. The sorbent exhibited a high maximum adsorption capacity of 19.2 and 9.4 mg/g for diazinon and malathion, respectively. The parameters affecting the microextraction were optimized by the MultiSimplex method. Under the optimized conditions, the calibration graphs were linear in the concentration ranges of 0.3–50.0 and 0.5–50 μg/L with the limits of detection of 0.09 and 0.14 μg/L for diazinon and malathion, respectively. The relative standard deviations (n = 5) at a concentration level of 10.0 μg/L of analytes were less than 2.5 and 4% for intra and interday, respectively. The developed method was successfully used for the determination of diazinon and malathion in apple, tomato, cucumber, tap water, and well water samples.  相似文献   

8.
目的:建立刺激胰岛素分泌的新型降糖药物(-)-2 (S)-苄基-4-酮-4-(顺式-全氢化异吲哚-2-基)丁酸钙对映体的HPLC拆分方法。方法:采用Sumichiral OA-3300手性柱(250 × 4.6 mm I.D., 5 μm), 柱温35℃,以0.05 mol·L-1醋酸铵的甲醇溶液为流动相,检测波长为210 nm。结果:本品两对映体在22分钟内实现良好分离,分离度达3以上,S-异构体分别在0.028 ~ 5.6 μg mL-1和0.03 ~ 6.0 μg mL-1范围内线性关系良好,回归方程分别为:Y=1.32×103x-2.54 (r=0.9997)和Y=1.15×103x-1.78 (r=0.9998),最低检测限分别为0.15 ng和0.10 ng,方法精密度RSD低于1.0% (n=5)。结论:建立的对映体分离方法可用于本品光学异构体的质量控制。  相似文献   

9.
Resorcinol–formaldehyde aerogel coating was in situ prepared on the surface of basalt fibers. The aerogel coating is uniformly modified onto basalt fibers, and it is very porous according to the characterization by using scanning electron microscopy. An extraction tube was prepared for in‐tube solid‐phase microextraction by placing the aerogel‐coated basalt fibers into a polyetheretherketone tube. To evaluate the extraction performance toward five estrogenic compounds, the tube was connected with high performance liquid chromatography, the important extraction and desorption conditions were investigated. An online analytical method for detection of estrogens was developed and presented low limits of detection (0.005–0.030 µg/L), wide linear ranges (0.017–20, 0.033–20, and 0.099–20 µg/L), good linearity (r > 0.9990), and satisfactory repeatability (relative standard deviation < 2.7%). The method was successfully applied to detect trace estrogens in real water samples (bottled pure water and bottled mineral water), satisfactory recoveries were ranged from 80 to 125% with two spiking levels of 2 and 6 µg/L.  相似文献   

10.
In this study, a hydrophilic deep eutectic solvent was synthesized as a carrier and disperser of magnetic nanoparticles based on ferrofluid and used to develop the dispersive micro‐solid‐phase extraction method. Ethylene glycol/tetramethylammonium chloride deep eutectic solvent and SiO2@Fe3O4 were used to provide the highly stable ferrofluid with strong sorbing properties without any additional stabilizer, which was employed to extract and determine morin in apple and grape juices, diluted and acidic extract of dried onion, and green tea infusion samples. The dispersibility of SiO2@Fe3O4 and prevention of its aggregation in the sample solution were improved using the deep eutectic solvent‐based ferrofluid. Also, it facilitated the fast injection of sorbent into the sample solution that led to an increase of the contact surface between the sorbent and analyte, and reduction of the extraction time and consumption of the sorbent. The important experimental parameters influencing the extraction efficiency of morin were examined. Under the optimal conditions, a linear calibration curve was obtained in the range of 3–500 µg/L with a determination coefficient of 0.9994. The limits of detection and quantification were of 0.91 and 2.98 µg/L, respectively. While an extraction recovery of 97.7% with relative standard deviation of 3.8% (interday) was obtained via three replicated measurements on a 30 µg/L of morin standard solution, the enrichment factor was 39.1. Finally, this method was successfully used to extract and preconcentrate morin in various samples, followed with their determination by high‐performance liquid chromatography with ultraviolet detection.  相似文献   

11.
On the basis of the principle of combination of active groups, a series of novel N‐(4‐([2,2′:5′,2′′‐terthiophen]‐5‐yl)‐2‐methylbut‐3‐yn‐2‐yl) benzamide derivatives were designed, synthesized and systematically evaluated for their antiviral activity against tobacco mosaic virus (TMV). The bioassay results showed that most of these compounds displayed good anti‐TMV activity, and some of them exhibited higher antiviral activity than commercial Ningnanmycin. Especially, compound 8e with excellent anti‐TMV activity (inactivation activity, 92.3%/500 µg·mL?1; curative activity, 85.7%/500 µg·mL?1 and protection activity, 64.7%/500 µg·mL?1) emerged as a potential inhibitor of plant virus TMV. Quantitative structure‐activity relationship studies proved that the van der Waals volume (V) and electronic parameter (∑(∑σo+σp) and ∑σm) for the substituent R1 were very important for antiviral activities in this class of compounds.  相似文献   

12.
Six new 1,3‐diorganylimidazolidin‐2‐ylidene (NHC) gold(I) complexes of the type [Au(NHC)2]+ (1–6), were synthesized by reacting [AuCl(PPh)3] with 1,3‐dimesitylimidazolidin‐2‐ylidene or bis(1,3‐dialkylimidazolidin‐2‐ylidene). The complexes 1–6 were fully characterized by elemental analyses and spectroscopic data. The placement of mesityl or para‐substituted benzyl groups on the nitrogen atoms of the ring of the complexes leads to the particularly active antibacterial agents evaluated in this work. It is worth noting that the p‐methoxybenzyl derivative (2) inhibited the growth of Pseudomona aeruginosa, Staphylococcus epidermidis, Staphylococcus aureus and Enterococcus faecalis with minimum inhibitory concentration (MIC) values of 3.12 µg ml?1, 6.25 µg ml?1, 3.12 µg ml?1 and 3.12 µg ml?1 respectively. In contrast, the analogous p‐dimethylaminobenzyl derivative (3) is effective only against Escherichia coli (MIC = 3.12 µg ml?1). Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
We describe an optimization approach to determine simultaneously occurring chelating agents (glycine, malonic acid, citric acid, glycolic acid, lactic acid, DL‐malic acid, and ethylenediaminetetraacetic acid) in an electroplating effluent using high‐performance liquid chromatography. With chromatography signal area and overall resolution considered as responses, detection conditions were optimized via multiple functions combined with response surface methodology and Plackett–Burman design. Optimized detection conditions were as follows: 15 mmol/L ammonium phosphate buffer (pH 2.5), a 94:6 v/v ratio of ammonium phosphate buffer/acetonitrile, a column temperature of 23.3°C, and a mobile phase flow rate of 1 mL/min. The experimental values conformed to the predicted values and were repeatable (relative standard deviation < 6.4%) and linear (r> 0.991) over concentration ranges of 1–100 µmol/L. Moreover, the quantification limit (signal‐to‐noise ratio = 10) and the detection limit (signal‐to‐noise ratio = 3) ranged from 0.03 to 0.15 µmol/L and from 0.01 to 0.04 µmol/L, respectively. These results indicate that high‐performance liquid chromatography coupled with statistical design may be a simple and rapid method for simultaneously determining multiple chelating agents in electroplating wastewater effectively.  相似文献   

14.
In this work, the modified carbon paste electrode (CPE) with an imidazole derivative 2‐(2,3 dihydroxy phenyl) 4‐methyl benzimidazole (DHPMB) and reduced graphene oxide (RGO) was used as an electrochemical sensor for electrocatalytic oxidation of N‐acetyl‐L‐cysteine (NAC). The electrocatalytic oxidation of N‐acetyl‐L‐cysteine on the modified electrode surface was then investigated, indicating a reduction in oxidative over voltage and an intensive increase in the current of analyte. The scan rate potential, the percentages of DHPMB and RGO, and the pH solution were optimized. Under the optimum conditions, some parameters such as the electron transfer coefficient (α) between electrode and modifier, and the electron transfer rate constant) ks) in a 0.1 M phosphate buffer solution (pH=7.0) were obtained by cyclic voltammetry method. The diffusion coefficient of species (D) 3.96×10?5 cm2 s?1 was calculated by chronoamperometeric technique and the Tafel plot was used to calculate α (0.46) for N‐ acetyl‐L‐cysteine. Also, by using differential pulse voltammetric (DPV) technique, two linear dynamic ranges of 2–18 µM and 18–1000 µM with the detection limit of 61.0 nM for N‐acetyl‐L‐cysteine (NAC) were achieved. In the co‐existence system of N‐acetyl‐L‐cysteine (NAC), uric acid (UA) and dopamine (DA), the linear response ranges for NAC, UA, and DA are 6.0–400.0 µM, 5.0–50.0 µM and 2.0–20.0 µM, respectively and the detection limits based on (C=3sb/m) are 0.067 µM, 0.246 µM and 0.136 µM, respectively. The obtained results indicated that DHPMB/RGO/CPE is applicable to separate NAC, uric acid (UA) and dopamine (DA) oxidative peaks, simultaneously. For analytic performance, the mentioned modified electrode was used for determination of NAC in the drug samples with acceptable results, and the simultaneous determination of NAC, UA and DA oxidative peaks was investigated in the serum solutions, too.  相似文献   

15.
Poly([R]‐3‐hydroxybutyrate) (PHB), a natural biodegradable polyester, has attracted much attention as a new biomaterial because of its sustainability and good biocompatibility. In this study, it is discovered that PHB can be conveniently functionalized to obtain a number of platform chain architectures that may provide a wide range of functional copolymers. In a transesterification reaction, linear (di‐hydroxylated) and star shaped (tri‐ and tetra‐hydroxylated) PHB oligomers are synthesized, followed by copolymerization with 2‐(dimethylamino)ethyl methacrylate and quaternization with benzyl bromide to afford antimicrobial properties. The antimicrobial activities of the quaternary salts against clinically relevant pathogens on the interactions with outer and cytoplasmic membranes, lethal mechanisms, multipassage resistance, and synergy effect with antibiotics are investigated. Cationic PHB copolymers show effectiveness as antimicrobial agents, with minimum inhibitory concentration values 0.24–0.65 µm (or µmol dm?3) (or 32–128 µg mL?1) against Gram‐positive and Gram‐negative bacteria. Modifying the copolymer architectures into star shapes results in enhanced effectiveness to disrupt the membrane integrity. Synergistic effects are attained for all the quaternized PHB derivatives when they are used together with tobramycin. Multipassage resistance does not occur in both the linear and star derivatives against Gram‐negative bacteria after 20 passages.  相似文献   

16.
By synthesizing a molecular imprinted polymer as an efficient adsorbent, ciprofloxacin was micro‐extracted from seawater, human blood plasma and tablet samples by pipette‐tip micro solid phase extraction and determined spectrophotometrically. Response surface methodology was applied with central composite design to build a model based on factors affecting on microextraction of ciprofloxacin; including volume of eluent solvent, number of extraction cycles, number of elution cycles, and pH of sample. Other factors that affect extraction efficiency, such as type of eluent solvent, volume of sample, type, and amount of salt were optimized with one‐variable‐at‐a‐time method. Under optimum extraction condition, pH of sample solution was 7.0, volume of eluent solvent (methanol) was 200 µL, volume of sample solution was 10 mL, and the number of extraction and elution cycles was five and seven, respectively, amount of Na2SO4 (as salt) and MIP (as sorbent) were optimized at 150 and 2 mg, respectively. The linear range of the suggested method under optimum extraction factors was 5–150 µg/L with a limit of detection of 1.50 µg/L for the analyte. Reproducibility of the method (as relative standard deviation) was better than 7%.  相似文献   

17.
This article compares the use of batch‐injection analysis (BIA) with a conventional batch system for the anodic stripping voltammetric (ASV) determination of Pb, Cu and Hg in biodiesel using screen‐printed gold electrode (SPGE). The optimized BIA conditions were 200 µL of injection volume of the digested samples at 5 µL s?1 directly on the working electrode of the SPGE immersed in 0.1 mol L?1 HCl solution. Therefore, BIA‐ASV presented the advantages of low sample consumption, which extended the SPGE lifetime to a whole working day of analyses, and potential for on‐site analysis using battery‐powered micropipettes and potentiostats. Although presenting lower sensitivity than conventional systems, the BIA‐ASV presented detection limit values of 1.0, 0.5 and 0.7 µg L?1, respectively for Pb, Cu and Hg, a linear range between 20 and 280 µg L?1, and adequate recovery values (90–110 %) for spiked biodiesel samples.  相似文献   

18.
The herbicides in naked oat (Avena nuda L.) samples were extracted, separated, and determined by using ionic‐liquid‐based matrix solid‐phase dispersion‐solvent flotation coupled with high‐performance liquid chromatography. The experimental parameters were optimized and evaluated by a univariate method and orthogonal experiment. A good linear relationship was obtained in the range of 5–5000 µg/kg, and the linear correlation coefficient are between 0.9989~0.9993. The quantification limits for alachlor, metazachlor, propanil, acetochlor, pretilachlor, metolachlor, and butachlor are 5.03, 2.62, 2.73, 4.58, 7.28, 5.05, 5.78 µg/kg, respectively. The average recoveries of the acetanilide herbicides at spiked concentrations of 10, 100, and 500 µg/kg ranged from 92.1 to 104.7%, and relative standard deviations were equal to or lower than 2.9%.  相似文献   

19.
The present work describes a simple route to magnetize MIL‐53(Al)‐NH2 sorbent for rapid extraction of phenol residues from environmental samples. To extend the applications and performances of the metal‐organic frameworks in the field of adsorption materials, we combined the properties of metal‐organic frameworks and magnetite to decrease the extraction time and simplify the extraction process as well. In this study, a simple and quick vortex‐assisted dispersive magnetic solid phase extraction method for the extraction of ten United States Environmental Protection Agency's priority phenols from water samples prior to analysis by high‐performance liquid chromatography with photodiode array detection was proposed. The developed method exhibits a rapid enrichment of the target analytes within 10 s for extraction and 10 s for desorption. Low detection limits of 1.8‐41.7 µg/L and quantitation limits of 6.0‐139.0 µg/L with the relative standard deviations for intra‐ and interday analyses less than 12% were achieved. Satisfactory recoveries in the range of 80‐111% with the relative standard deviations less than 11% demonstrated that Fe3O4/MIL‐53(Al)‐NH2 is promising sorbent in the field of magnetic solid‐phase extraction for environmental samples.  相似文献   

20.
The present study deals with the synthesis and electrospining of a new terpolymer nanofiber in order to determine the amount of diazinon and chlorpyrifos in water and fruit juice samples. The synthesized terpolymer and the prepared nanofiber were characterized using 1H NMR spectroscopy, FTIR spectroscopy, scanning electron microscopy, and gel permeation chromatography. The performance of terpolymer nanofiber, prepared as a sorbent for micro solid phase extraction was investigated for the extraction of diazinon and chlorpyrifos from aquaeous media. Then, the target analytes were desorbed from the coating with an organic solvent and analyzed by gas chromatography with flame ionization detector. Extraction efficiencies were significant (>90%) under the optimum condition. The proposed method also demonstrated good linear dynamic ranges for diazinon and chlorpyrifos (3–250 and 5–200 µg/L), and low limit of detections (0.5 and 0.7 µg/L) respectively. Moreover, under optimum condition for extraction of diazinon and chlorpyrifos, square of correlation coefficients (R2) of 0.9978 and 0.9953 and relative standard deviations of 4.6 and 5.1% were achieved, respectively. The recoveries for diazinon and chlorpyrifos were in the range of 85–97%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号