首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
李雪  张然  袁新芳  熊建桥  陈淑芬 《发光学报》2018,39(11):1579-1583
把包裹SiO2的金纳米棒(Au NRs@SiO2)掺杂到有机太阳能电池的活性层中,利用表面等离子体共振效应来增强活性层对光的吸收,从而提高有机太阳能电池的能量转换效率。研究了不同掺杂浓度和不同包裹厚度对电池性能的影响。结果表明,掺杂浓度为1.5%时,器件性能最佳,能量转换效率达到4.02%;SiO2壳层厚度为3 nm时,转换效率达到4.38%,较标准电池提升了29.2%。  相似文献   

2.
《中国物理 B》2021,30(10):104207-104207
To address the discrepancy between carrier collection and light absorption of organic solar cells caused by the limited carrier mobility and optical absorption coefficient for the normally employed organic photoactive layers, a light management structure composed of a front indium tin oxide(ITO) nanograting and ultrathin Al layer inserted in between the photoactive layer and the electron transport layer(ETL) is introduced. Owing to the antireflection and light scattering induced by the ITO nanograting and the suppression of light absorption in the ETL by the inserted Al layer, the light absorption of the photoactive layer is significantly enhanced in a spectral range from 400 nm to 650 nm that also covers the main energy region of solar irradiation for the normally employed active materials such as the P3HT:PC_(61) BM blend. The simulation results indicate that comparing with the control device with a planar configuration of ITO/PEDOT:PSS/P3HT:PC_(61) BM(80-nm thick)/Zn O/Al, the short-circuit current density and power conversion efficiency of the optimized light management structure can be improved by 32.86% and 34.46%. Moreover, good omnidirectional light management is observed for the proposed device structure. Owing to the fact that the light management structure possesses the simple structure and excellent performance, the exploration of such a structure can be believed to be significant in fabricating the thin film-based optoelectronic devices.  相似文献   

3.
A dual plasmonic resonance effect on the performance of poly(3‐hexylthiophene) (P3HT):phenyl C61‐butyricacid methyl ester (PC61BM) based polymer solar cells (PSCs) has been demonstrated by selectively incorporating 25 nm colloidal gold nanoparticles (Au NPs) in a solution‐processed molybdenum oxide (MoO3) anode buffer layer and 5 nm colloidal Au NPs in the active P3HT:PCBM layer. The devices exhibit up to ~20% improvement in power conversion efficiency which is attributed to the dual effect of localized surface plasmon resonance (LSPR) of Au NPs with enhanced light absorption and exciton generation. Our report shows a guideline on the usage of dual LSPR effect for the solution‐processed polymer solar cells to achieve high efficiencies. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

4.
A highly dense and uniform layer of Au nanoparticles (NPs) on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) film has been produced by the pulsed laser deposition (PLD) technique toward the production of an improved efficiency photovoltaic device. The advantage of PLD over other techniques is the easy and precise control of the Au NPs size and spatial distribution, without needing of further NP surface functionalization. The efficiency enhancement factor related to Au NPs doping has been evaluated in a solar cell based on poly-(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) diffused bilayer. The short-circuit current density, J SC, increases by 18 % and the power conversion efficiency by 22 %, respectively, in comparison with an equivalent device without Au NPs. The optical and morphological properties of the Au NPs layer have been selected in order to evaluate the contribution of the surface plasmon resonance as enhancement factor of the solar cell efficiency, in a range size where light scattering is negligible.  相似文献   

5.
The mobility enhancement of organic thin‐film transistors based on poly(3‐hexylthiophene) (P3HT) by incorporating gold nanorods (Au NRs) is reported. Through varying the doping concentration and surface modifier of the Au NRs in P3HT matrix, the P3HT/Au composite with 0.5 mg mL?1 pyridine‐capped Au NRs exhibits a hole mobility of 0.059 cm2 V?1 s?1, this value is seven times higher than that of pristine P3HT. This remarkable improvement of mobility originates from the enhanced crystallinity and optimized orientation of P3HT after doping with Au NRs. In addition, the appropriate surface modification can produce more‐efficient hole conduction of Au NRs.  相似文献   

6.
石鑫  徐建萍  李霖霖  王昶  李岚 《发光学报》2015,36(8):898-905
研究了碳量子点负载的Ti O2纳米棒阵列光阳极的光电化学过程和光催化行为。实验发现碳量子点的引入使Ti O2纳米棒阵列在可见光区域的吸收强度增强,对可见光的响应电流提高3倍,光照下的开路电位增加了2.5%,光生载流子的转移和传输能力得到相应提高。光阳极对亚甲基蓝的降解特性显示,碳量子点的引入使Ti O2纳米棒在可见光照射下的催化效率由25%提高到33%。利用电化学交流阻抗谱(EIS)、MottSchottky曲线讨论了光影响下的电荷运动过程,表明Ti O2纳米棒阵列负载碳量子点后的电荷转移电阻减小,电子寿命增加;碳量子点的负载使Ti O2纳米棒的平带电位负移,导带位置提高,电子的还原能力增强。  相似文献   

7.
Four kinds of Au nanorods(NRs)with different aspect ratios are designed to adjust the relationship between resonance energy level of longitudinal(L)and transverse(T)modes.During the femto-second Z-scan experiments,huge saturable absorption phenomena are observed while the energy level T is located between one to two times of the energylevel L.This means that the energy may transfer between longitudinal and transverse energylevels in the same and/or different Au NRs.It effectively depresses the production of revised saturated absorption and increases the saturable absorption efficiency.This method is significant for the preparation of high-efficiency saturable absorption devices.  相似文献   

8.
《Current Applied Physics》2015,15(9):1090-1094
We fabricated organic photovoltaic (OPV) devices containing various Au nanostructures mixed with hole-collecting buffer layer. The presence of the Au nanostructures results in enhancement of the external quantum efficiencies (EQE) at dissimilar wavelengths of visible light, which can be attributed to the modulated plasmonic absorption frequency of the Au nanostructures. In addition to this plasmonic effect induced by visible light absorption, an increase in the EQE was also found upon UV excitation, which can be attributed to scattering effects induced by Au particles. The optical response pattern of organic photovoltaic devices can be modulated in a wide range of visible and UV wavelengths, by controlling sizes and shapes of the Au nanostructures.  相似文献   

9.
Gold nanorods (NRs), rod-shaped gold nanoparticles, were modified with bovine serum albumin (BSA) and polyethylenimine (PEI) using layer-by-layer technique. From absorption spectroscopy and zeta potential measurements, it was obvious that NRs were wrapped with these polymers without aggregation of NRs. Following BSA modification, the surface-modified NRs (BSA-NRs) were well-dispersed without aggregation in biochemical conditions, verified from absorption spectroscopy. Further modification with PEI provided positively charged NRs (PEI-NRs). A transmission electron microscopy image of PEI-NRs revealed that the surface modification did not affect changing the shape of the initial NRs. In addition, the PEI-NRs retained the colloidal stability of BSA-NRs in biochemical conditions. We have evaluated that transfection activity of PEI-NRs with HeLa cells. From results of gene expression experiments, it was obvious that the stabilization of NRs by BSA and further modification with PEI realized transfection using NRs into cultured cells. Moreover, the cellular uptake of NRs enabled cellular imaging using light scattering from the NRs.  相似文献   

10.
采用时域有限差分(FDTD)法研究Au纳米颗粒@碳球(AuNPs@CS)复合结构的光吸收控制。发现Au纳米颗粒@碳球复合结构中Au颗粒的位置可以控制复合结构光吸收。模型计算中选取两粒Au纳米颗粒以最佳深度(0 nm)嵌入碳球表面。当两粒Au颗粒球心与碳球球心夹角为22.5°和45°时,复合结构光吸收较单一碳球光吸收明显增强;当夹角为315°、270°、180°、90°时,光吸收增量逐渐减小;当夹角为337.5°时,光吸收量低于单一碳球。这一结果主要归因于Au纳米颗粒位置变化可引起表面等离子体光强度和光散射方向的变化。改变碳球表面Au纳米颗粒的数量和位置,可以进一步调节AuNPs@CS复合结构的光吸收。  相似文献   

11.
将传统半导体材料与金属微纳结构相结合,利用其表面等离激元共振效应,可有效地增强复合结构的光电转换效率,使其广泛地被用于光电化学和光电探测等领域.本文以氧化铝纳米管为模板,采用原子层沉积技术制备出高有序的TiO2纳米管,并通过电子束热蒸发技术在大孔径的纳米管薄膜中分别负载金、铝和双金属金/铝纳米颗粒,形成金属纳米颗粒/TiO2纳米管复合结构.研究结果表明,相对于纯TiO2纳米管,Au/TiO2复合纳米管在568 nm的可见光照射下,其光电流密度约有400%的提高;在365 nm紫外光照射下,Al/TiO2复合纳米管的光电流提高约50%;同时负载双金属Au和Al纳米颗粒的TiO2纳米管在整个紫外-可见光区域光电流均显著增强.  相似文献   

12.
LiNbO3∶Cr∶Cu晶体吸收特性及非挥发全息存储研究   总被引:1,自引:1,他引:0  
研究了LiNbO3∶Cr∶Cu晶体的吸收特性,发现LiNbO3∶Cr∶Cu(含0.14 wt.% Cr2O3 和 0.011 wt.% CuO)晶体存在两个明显的吸收峰,中心波长分别位于480 nm和660 nm; 随着Cr的含量逐渐减小,Cu的含量逐渐增大,短波段不存在明显吸收峰,掺Cr的含量越大,中心波长在660 nm处的吸收越大;633 nm红光虽然位于中心波长为660 nm的吸收峰内,但它无助于光折变过程.分别采用390 nm紫外光和488 nm蓝光作为敏化光,514 nm绿光作为记录光的记录方案,实现了非挥发全息记录,掺入适量的Cr( 比如NCr=2.795×1025 m-3,NCr/ NCu=1)有助于全息记录性能的提高.  相似文献   

13.
Gold (Au) nanomaterials are promising photothermal agents for the selective treatment of tumor cells owing to the strong capability to convert near‐infrared (NIR) irradiation into heat energy. One basic issue for practical photothermal therapy is the enhancement of photothermal effect in NIR region. Here, various low‐molecular‐weight thiols are applied to induce one‐dimensional (1D) self‐assembly of Au nanorods (NRs), which leads to the redshift of absorption peak towards NIR region. As a result, the 1D assembled Au NRs exhibit improved photothermal effect at 808 nm in comparison to unassembled Au NRs.  相似文献   

14.
张科  胡子阳  黄利克  徐洁  张京  诸跃进 《物理学报》2015,64(17):178801-178801
目前有机光伏电池的吸光活性层电学传输特性和光学吸收特性的不匹配是制约其能量转换效率提升的主要原因之一. 通过陷光结构对入射光进行调控, 提高电池对光的约束和俘获能力从而达到“电学薄”和“光学厚”的等效作用, 是解 决有机光伏电池电学和光学不匹配的有效手段. 本文采用湿法刻蚀技术获得了系列时间梯度的绒面氧化锌掺铝薄膜, 并将其作为有机光伏电池的入射陷光电极, 显著增强了电池的光学吸收. 研究发现, 当使用浓度0.5%的稀HCL腐蚀30 s后的氧化锌掺铝薄膜作为入射电极后, 电池的光电性能和效率显著增强. 基于此绒面电极电池的电流密度比平面结构的电池提高了8.17%, 效率改善了11.29%. 通过对绒面电极表面的修饰处理, 实现了电极与光活性层之间良好的界面接触, 从而减小了对电池的开路电压和填充因子的影响.  相似文献   

15.
李洪敬 《应用光学》2014,35(3):505-509
提高太阳能电池光电转换效率的一个重要途径就是提高它的光子吸收能力。在传统非晶硅薄膜太阳能电池中加入了金属光栅,设计出一种新的复合电池结构。基于严格耦合波分析矢量衍射理论计算了该结构的吸收光谱和增强因子;讨论了光栅宽度、入射光角度和入射光偏振态对吸收的影响。结果显示,设计的太阳能电池结构能够显著提高光的吸收率,在TM偏振光入射条件下,该结构的吸收增强因子最高可达40%;在其他偏振态光线入射时,其吸收增强因子也可达到16%左右。  相似文献   

16.
Gold disk targets were irradiated using focusing and beam smoothing methods on Xingguang (XG-II) laser facilities with 350 nm wavelength, 0.6 ns pulse width and 20-80 Joules energies. Laser absorption, light scattering and X-ray conversion were experimentally investigated. The experimental results showed that laser absorption and scattered light were about 90% and 10%, respectively, under focusing irradiation, but the laser absorption increased 5%-10% and the scattered light about 1% under the condition of beam smoothing. Compared with the case of focusing irradiation, the laser absorption was effectively improved and the scattered light remarkably dropped under uniform irradiation; then due to the decrease in laser intensity, X-ray conversion increased. This is highly advantageous to the inertial confinement fusion. However, X-ray conversion mechanism basically did not change and X-ray conversion efficiency under beam smoothing and focusing irradiation was basically the same.  相似文献   

17.
陈肖慧  赵家龙 《发光学报》2012,33(12):1324-1328
研究了倒置器件结构以及CdSe量子点发光材料与金属纳米粒子之间的相互作用对量子点的电致发光性能的影响。利用TiO2作为电子传输/注入层,成功地制备了倒置结构的量子点电致发光器件。通过对单载流子器件电压-电流特性的分析,证明了ITO作为阴极到TiO2的电子注入特性与Al作为阴极时的效果几乎相同。观察到金属纳米粒子产生的局域等离子体效应提高了器件的效率,使得效率随电流增大而降低的速度明显减小。在电流密度为200 mA/cm2时,电致发光器件的效率大约提高了42%。  相似文献   

18.
For spherical Cu, Ag, and Au nanoparticles with a radius of 1–3 nm in copper phthalocyanine (CuPc), with allowance for internal size effects, we calculate the scattering efficiency factor in the near zone, the extinction efficiency factor due to scattering and absorption of incident radiation, and the efficiency of the increase in absorption by the matrix material. This occurs in the CuPc absorption bands, as well as in the weak absorption region of CuPc, where, owing to surface plasmon resonance, an additional absorption band arises for nanoparticles of all three materials. For Ag nanoparticles, the increase in absorption is twice as high as for Cu and Au nanoparticles; for these it differs inconsiderably.  相似文献   

19.
We report to apply Al nanoparticles (NPs) to enhance the photovoltaic response of crystalline- or c-Si solar cell from the ultraviolet (UV) throughout the visible and near infrared (NIR) regimes. Al NPs were induced by solid thermal annealing and embedded in a SiO2 layer that was to passivate the front side of solar cell. Upon the excitation of surface plasmons (SPs) on the Al NPs under light illumination, an enhancement of broadband absorption of the solar cell was observed. The incorporation of Al NPs led to a relative 13.8% increase in photoelectric conversion efficiency of c-Si solar cell, and an external quantum efficiency enhancement from the UV throughout the visible and NIR regimes. The improvement of c-Si solar cell performance was attributed to both effects of absorption and scattering by SPs.  相似文献   

20.
Plasmonic metal nanoparticles have shown great promise in enhancing the light absorption of organic dyes and thus improving the performance of dye-sensitized solar cells (DSSCs). However, as the plasmon resonance of spherical nanoparticles is limited to a single wavelength maximum (e.g., ~ 520 nm for Au nanoparticles), we have here utilized silica-coated gold nanorods (Au@SiO2 NRs) to improve the performance at higher wavelengths as well. By adjusting the aspect ratio of the Au@SiO2 NRs, we can shift their absorption maxima to better match the absorption spectrum of the utilized dye (here we targeted the 600–800 nm range). The main challenge in utilizing anisotropic nanoparticles in DSSCs is their deformation during the heating step required to sinter the mesoporous TiO2 photoanode and we show that the Au@SiO2 NRs start to deform already at temperatures as low as 200 °C. In order to circumvent this problem, we incorporated the Au@SiO2 NRs in a TiO2 nanoparticle suspension that does not need high sintering temperatures to produce a functional photoanode. With various characterization methods, we observed that adding the plasmonic particles also affected the structure of the produced films. Nonetheless, utilizing this low-temperature processing protocol, we were able to minimize the structural deformation of the gold nanorods and preserve their characteristic plasmon peaks. This allowed us to see a clear redshift of the maximum in the incident photon-to-current efficiency spectra of the plasmonic devices (Δλ ~ 14 nm), which further proves the great potential of utilizing Au@SiO2 NRs in DSSCs.
Graphical Abstract Undeformed gold nanorods provide an enhanced performance of dye-sensitized solar cells at high wavelengths
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号