首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nylon 6–PIB diblock, triblock, and tristar radial block copolymers have been synthesized from telechelic hydroxyl-terminated polyisobutylene, PIB(OH)n (n = 1,2,3), by conversion of this prepolymer with hexamethylene diisocyanate (HMDI), toluene diisocyanate (TDI), N-chlorocarbonyl diisocyanate (NCCI), and oxalyl chloride (OxCl) and using the resulting materials as macroactivators for anionic caprolactam polymerization. Prepolymers with molecular weights from 6000 to 38,000 have been employed. Derivatization with NCCI and subsequent anionic caprolactam polymerization gave highest yields and blocking efficiencies. The block copolymers have been characterized by molecular weight and composition. In addition to the expected Tg and Tm characteristics of long PIB and nylon 6 segments, DSC studies showed an intermediate glass transition at ca. ?20°C. Transmission electron microscopy of di-, tri-, and radial blocks show increasing segregation and orientation of rubbery/crystalline domains. Tensile strengths and elongations of the block copolymers range from 16.5 to 41 MPa and 15 to 30%, respectively, and stress-strain diagrams show the effect of block architecture on these properties.  相似文献   

2.
In an effort to combine and tailor the properties of thermoplastic resins we have investigated the synthesis of polyimide–polyformal block copolymers prepared by the condensation reaction of α,ω-diamino functionalized polyformal oligomers with α,ω-dianhydride terminated polyimide oligomers. Amino functionalized polyformal oligomers were synthesized by displacement condensation reactions of various bisphenols with methylene dihalides in the presence of base and aminophenols. Oligomeric aromatic polyformals having weight average molecular weights (MWw) of 7500 to 40,000 were obtained. Anhydride terminated polyimide oligomers with molecular weights (MWw) ranging from 10,000 to 15,000 were obtained by the condensation of bisphenol-A–dianhydride and aromatic amines. Combining the polyimide oligomers with the polyformal oligomers in dipolar aprotic or nonpolar solvents afforded the desired block copolymers. The polyimide–polyformal block copolymers generally display two distinct glass transition temperatures by differential scanning calorimetry. The (AB)n block copolymers were evaluated by TGA in both air and N2 for thermal/oxidative stability.  相似文献   

3.
A series of α,ω-dihydroxy polyarylene sulfones (PAES) were synthesized comprising bisphenol A (PAES1, Mn=1800, 4900, and 9500 daltons), 4,4-biphenol (PAES2, Mn=4100 daltons), and hexafluorobisphenol A (PAES3, Mn=3300 daltons). These were reacted with α,ω-dibromo poly(vinylidene fluoride) (PVDF, Mn=1200 daltons) prepared by telomerization, to yield block copolymers possessing rigid and flexible segments. Block copolymers were characterized by FTIR, NMR, GPC, DSC, TGA and TEM. In several cases the block copolymers exhibited distinct thermal transitions, i.e. Tm and Tg for PVDF and PAES segments, respectively. Where observable, Tg of PAES domains in the block copolymers occurred at a temperature lower than the corresponding PAES homopolymer due to the flexible nature of the surrounding PVDF domains. Block copolymers exhibited a similar thermal stability to the corresponding PAES homopolymers but higher stability than the PVDF homopolymer, and much higher still than α,ω-dibromo PVDF. TEM analyses indicate that phase separation of PAES and PVDF domains occurs on the nanometer scale.  相似文献   

4.
A series of well‐defined amphiphilic diblock copolymers consisting of hydrophobic polyisobutylene (PIB) and hydrophilic poly(2‐(diethylamino)ethyl methacrylate) (PDEAEMA) segments was synthesized via the combination of living carbocationic polymerization and reversible addition fragmentation chain transfer (RAFT) polymerization. Living carbocationic polymerization of isobutylene followed by end‐capping with 1,3‐butadiene was first performed at ?70 °C to give a well‐defined allyl‐Cl‐terminated PIB with a low polydispersity (Mw/Mn =1.29). This end‐functionalized PIB was further converted to a macromolecular chain transfer agent for mediating RAFT block copolymerization of 2‐(diethylamino)ethyl methacrylate at 60 °C in tetrahydrofuran to afford the target well‐defined PIB‐b‐PDEAEMA diblock copolymers with narrow molecular weight distributions (Mw/Mn ≤1.22). The self‐assembly behavior of these amphiphilic diblock copolymers in aqueous media was investigated by fluorescence spectroscopy and transmission electron microscope, and furthermore, their pH‐responsive behavior was studied by UV‐vis and dynamic light scattering. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1478–1486  相似文献   

5.
Thermotropic liquid crystalline (LC) polyethers and copolyethers have been synthesized from 4,4′-dihydroxy-α-methylstilbene (HMS) and α,ω-dichlorooligo(oxyethylene)s having between 2 and 5 as well as 8.7 oxyethylene units. Copolyethers were prepared from a 1:1 mol/mol ratio of two dissimilar spacers. These polymers have been prepared by a phase transfer catalyzed (PTC) polyetherification of bisphenols with these electrophiles by utilizing 50 mol% tetrabutylammonium hydrogen sulfate per phenol group. Kinetic experiments with either 5 or 50 mol% catalyst vs phenol groups in the polyetherification of 4,4%-isopropylidenediphenol with 2-chloroethyl ether have shown that a change in catalyst primarily affects the rate of reaction, with 50 mol % being faster. The prepared polyethers and copolyethers are soluble in common organic solvents. Both polyethers and copolyethers are crystalline. Polymers prepared to contain tetraoxyethylene spacers exhibit monotropic LC behavior. Copolymers prepared to contain tri- and tetraoxyethylene spacers (1 : 1 mol/mol) [PE34] were the only polymers exhibiting enantiotropic LC behavior. Longer spacers tend to destabilize the phase transitions, as suggested by the dependence of thermal transition temperatures upon the differential scanning calorimeter rate. All prepared polymers act as podants in solution, measured by picrate extraction experiments. Solid state complexes have been prepared from the polymer with a pentaoxyethylene spacer [PE5] and PE34 with LiCF3SO3. PE5 can dissolve LiCF3SO3 in the range of 0.21–2.2 mol salt/mol polymer (m.r.u.) [S/P] without the observation of free salt. PE5 complexes of/or below S/P of 0.43, upon annealing at room temperature, exhibited the two melting transitons observed in the polymer alone. PE5 complexes of/or above S/P of 0.77 only exhibited a Tg. The Tg of PE5 complexes were found to change nonlinearly with S/P, while Tm1 changed linearly. Tm2 was independent of S/P. Only one complex with PE34 gave two transitions (Tm2,Ti) in dynamic DSC experiments. Other PE34 complexes followed a behavior similar to PE5 complexes.  相似文献   

6.
A new telechelic polyisobutylene diol, HO? CH2? PIB? CH2? OH, carrying two terminal primary hydroxyl end groups has been prepared from α,ω-di(isobutenyl)polyisobutylene, CH2?C(CH3)- CH2? PIB? CH2C(CH3)?CH2, by regioselective hydroboration followed by alkaline hydrogen peroxide oxidation. Infrared (IR) spectra, 1H-NMR analysis of the pure and silylated products, and ultraviolet (UV) spectra of phenylisocyanate-treated diols indicate quantitative yields and two ? CH2OH termini per polyisobutylene chain. The viscosity of HO? CH2? PIB? CH2? OH is higher than that of the starting α,ω-diolefin. The telechelic diol prepolymer opens new avenues to the synthesis of many new materials, e.g., polyurethanes.  相似文献   

7.
Telechelic poly(ether ketone)s (PEKs) and polyisobutylenes (PIBs) were combined to form PIB? PEK? PIB triblock copolymers and (PIB? PEK)n multiblock copolymers via the formation of urea linkages. Monovalent and bivalent amino telechelic PIBs were prepared quantitatively from allyl telechelic PIBs by a newly developed reaction sequence featuring nucleophilic reaction steps. Telechelic PEK? NCO polymers were prepared from the corresponding amino telechelic PEKs via a reaction with diphosgene. The highly reactive PEK? NCO and PIB? NH2 telechelics formed PEK? PIB block copolymers only quantitatively when appropriately reactive primary amino groups were present on the amino telechelic PIBs. The obtained block copolymers were microphase‐separated and featured mostly lamellar structures, as determined by small‐angle X‐ray scattering (SAXS). Temperature‐dependent SAXS measurements revealed ordered polymers in the melt up to 210 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 188–202, 2005  相似文献   

8.
A simple but efficient strategy has been developed for the synthesis of novel di‐, tri‐, multi‐, and star‐block copolymers comprising poly(ethylene glycol) (PEG) and polyisobutylene (PIB) blocks. The synthesis principle involves the coupling of appropriately terminally functionalized PEG and PIB sequences, specifically the hydrosilation of mono‐, di‐, and tetra‐allyl‐telechelic PEGs (PEG‐allyl, allyl‐PEG‐allyl, and C(‐PEG‐allyl)4 by mono‐ and di‐Si(CH3)2H telechelic PIBs (PIB‐SiH and HiS‐PIB‐SiH). Representative block copolymers, for example, PEG‐PIB, PIB‐PEG‐PIB, (‐PIB‐PEG‐)n, and C(‐PEG‐PIB)4 have been assembled and their structures determined by 1H and 13C NMR spectroscopy. The bulk and surface morphology of select triblocks have been investigated by DSC and AFM and the findings interpreted in terms of phase‐separated PEG and PIB microdomains. The swelling behavior in water of various block copolymers also has been studied. Block copolymers containing 50–70 wt % PIB produce hydrogels, the integrity of which is maintained by physical crosslinks by PIB segments. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3200–3209, 2000  相似文献   

9.
The synthesis of novel arborescent (arb; randomly branched, “tree‐like,” and often called “hyperbranched”) block copolymers comprised of rubbery polyisobutylene (PIB) and glassy polystyrene (PSt) blocks (arb‐PIB‐b‐PSt) is described. The syntheses were accomplished by the use of arb‐PIB macroinitiators (prepared by the use of 4‐(2‐methoxyisopropyl) styrene inimer) in conjunction with titanium tetrachloride (TiCl4). The effect of reaction conditions on blocking of St from arb‐PIB was investigated. Purified block copolymers were characterized by 1H NMR spectroscopy and Size Exclusion Chromatography (SEC). arb‐PIB‐b‐PSt with 11.7–33.8 wt % PSt and Mn = 468,800–652,900 g/mol displayed thermoplastic elastomeric properties with 3.6–8.7 MPa tensile strength and 950–1830% elongation. Samples with 26.8–33.8 wt % PSt were further characterized by Atomic Force Microscopy (AFM), which showed phase‐separated mixed spherical/cylindrical/lamellar PSt phases irregularly distributed within the continuous PIB phase. Dynamic Mechanical Thermal Analysis (DMTA) and solvent swelling of arb‐PIB‐b‐PSt revealed unique characteristics, in comparison with a semicommercial PSt‐b‐PIB‐b‐PSt block copolymer. The number of aromatic branching points of the arb‐PIB macroinitiator, determined by selective destruction of the linking sites, agreed well with that calculated from equilibrium swelling data of arb‐PIB‐b‐PSt. This method for the quantitative determination of branching sites might be generally applicable for arborescent polymers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1811–1826, 2005  相似文献   

10.
The synthesis of a monoacrylate functionalized poly(isobutylene) (PIB) macromonomer (PIBA) has been achieved by a two‐step reaction starting from a commercially available PIB. Firstly, terminal olefins (vinylidene and trisubstituted olefin) of PIB were transformed to a phenolic residue by Friedel‐Crafts alkylation followed by subsequent esterification of the phenol with acryloyl chloride, catalyzed by triethylamine. PIBA structure was confirmed by 1H‐NMR, 13C‐NMR and GPC before utilizing in the RAFT copolymerization with N,N‐dimethylacrylamide (DMA) to obtain statistical copolymers (P[(DMA‐co‐(PIBA)]). Monomer conversions were consistently higher than 85% for both DMA and PIBA as monomer feed composition was varied. Chain extension of poly(N,N‐dimethylacrylamide) with PIBA to synthesize block copolymers (P[(DMA‐b‐(PIBA)]) was also achieved with near quantitative monomer conversions (>97%). Block formation efficiency was not quantitative but purification of block copolymers was possible by selective precipitation. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 634–643  相似文献   

11.
Palladium–catalyzed polycondensation between 2,5–diiodo–3–hexylthiophene I–Th(Hex)–I with mixtures of p–diethynylbenzene HCC—Ph—CCH and α,ω–diethynylalkane HCC(CH2)lCCH (l = 3 or 8) gives poly(aryleneethynylene) PAE–type copolymers [CC(CH2)lCC—Th(Hex)]m[CC—Ph—CC—Th(Hex)]n containing the methylene unit. The copolymers have a molecular weight (Mn) of about 1.2 × 104 as determined by GPC (polystyrene standard) and are considered to possess essentially a random sequences in view of the —CC(CH2)lCC— and —CC—Ph—CC— units as judged from their UV–visible spectra. By the incorporation of the (CH2)l unit, the λmax position of the corresponding PAE homopolymer [CC—Ph—CC—Th(Hex)]n is shifted to a shorter wavelength. However, the copolymers give rise to a photoluminescence PL peak essentially agreeing with a PL peak of the homopolymer, suggesting occurrence of energy transfer in the copolymer. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2201–2207, 1998  相似文献   

12.
Bis-ε-aminocaproylaminocaproylhexamethylenediamine ( I ) was synthesized as an analog of 6-nylon pentamer diamine, and its incorporation into block copolymers was studied with the use of α,ω-dihydroxyl, α,ω-bisdimethylchlorosilyl, and α,ω-diepoxy polystyrene. In the course of the experiments, the stability and the reactivity of 4,4′-diphenylmethane diisocyanate and tetramethylene diisocyanate in aprotic dipolar solvents were examined by infrared spectroscopy. The only usable solvent, N-methylpyrrolidone, was found still inadequate for the synthesis involving I, diisocyanate, and α,ω-dihydroxyl polystyrene. A block copolymer having M n = 18,000 was obtained by the reaction of I and α,ω-diepoxy polystyrene. All Tg values of the block copolymers were above 90°C, higher than for polystyrenes with corresponding molecular weight.  相似文献   

13.
The syntheses of {‐poly(L ‐lactide) (PLLA)‐b‐polyisobutylene (PIB)‐}n multiblock copolymers were accomplished for the first time by chain extension of PLLA‐b‐PIB‐b‐PLLA triblock copolymers. Well‐defined PLLA‐b‐PIB‐b‐PLLA triblock copolymers with predictable Mns, low PDIs (1.10–1.18) and excellent blocking efficiencies were prepared by anionic ring‐opening polymerizations of L ‐lactide initiated with hydroxyallyl telechelic PIB (HO‐Allyl‐PIB‐Allyl‐OH) in toluene at 110 °C. The triblock copolymers were successfully chain extended with 4,4′‐methylenebis(phenylisocyanate) (MDI) to obtain the multiblock copolymers with good gravimetric yields of ~86 to 96%. The chain‐extended polymers were soluble in a range of common organic solvents. The block copolymers showed two glass transition temperatures in differential scanning calorimetric analysis for the PIB and PLLA blocks indicating microphase separation, which was supported by atomic force microscopy images. The as‐synthesized compression molded multiblock copolymers exhibited tensile strengths in the range of 8–24 MPa with elongations at break in the range of 2.5–400%. The static and dynamic mechanical properties showed a strong dependence on the relative PLLA content in the copolymer. The dynamic mechanical analysis also indicated microphase separation at higher PLLA compositions. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3490–3505, 2009  相似文献   

14.
The cationic polymerization of isobutylene initiated by 4-(2-hydroxy-2-propyl)phenol/BCl3 system results mainly in α-phenol-ω-chlorooligoisobutylene; however p-(2-chloro-2,4-dimethyl-4-pentyl)phenol is present in all cases. α-Methyl-ω-chlorooligoisobutylene is formed only when the temperature is below?50°C; it results from initiation by the phenol/BCl3 system. Thermal dehydrochlorination of α-phenol-ω-chlorooligoisobutylene is quantitative and leads to a mixture of isomeric ω-unsaturated oligoisobutylenes. α-Methyl-ω-phenololigoisobutylene is prepared by the Friedel—Crafts reaction between industrial unsaturated oligoisobutylene and phenol in the presence of SnCl4 at ?30°C; the reaction is quantitative between ?50 and ?30°C degradation takes place. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
Polyisobutylene‐b‐poly(N,N‐diethylacrylamide) (PIB‐b‐PDEAAm) well‐defined amphiphilic diblock copolymers were synthesized by sequential living carbocationic polymerization and reversible addition‐fragmentation chain transfer (RAFT) polymerization. The hydrophobic polyisobutylene segment was first built by living carbocationic polymerization of isobutylene at ?70 ° C followed by multistep transformations to give a well‐defined (Mw/Mn = 1.22) macromolecular chain transfer agent, PIB‐CTA. The hydrophilic poly(N,N‐diethylacrylamide) block was constructed by PIB‐CTA mediated RAFT polymerization of N,N‐diethylacrylamide at 60 ° C to afford the desired well‐defined PIB‐b‐PDEAAm diblock copolymers with narrow molecular weight distributions (Mw/Mn ≤1.26). Fluorescence spectroscopy, transmission electron microscope, and dynamic light scattering (DLS) were employed to investigate the self‐assembly behavior of PIB‐b‐PDEAAm amphiphilic diblock copolymers in aqueous media. These diblock copolymers also exhibited thermo‐responsive phase behavior, which was confirmed by UV‐Vis and DLS measurements. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1143–1150  相似文献   

16.
The atom transfer radical polymerization of methyl methacrylate (MMA) and n‐butyl methacrylate (n‐BMA) was initiated by a poly(ethylene oxide) chloro telechelic macroinitiator synthesized by esterification of poly(ethylene oxide) (PEO) with 2‐chloro propionyl chloride. The polymerization, carried out in bulk at 90 °C and catalyzed by iron(II) chloride tetrahydrate in the presence of triphenylphosphine ligand (FeCl2 · 4H2O/PPh3), led to A–B–A amphiphilic triblock copolymers with MMA or n‐BMA as the A block and PEO as the B block. A kinetic study showed that the polymerization was first‐order with respect to the monomer concentration. Moreover, the experimental molecular weights of the block copolymers increased linearly with the monomer conversion, and the molecular weight distribution was acceptably narrow at the end of the reaction. These block copolymers turned out to be water‐soluble through the adjustment of the content of PEO blocks (PEO content >90% by mass). When the PEO content was small [monomer/macroinitiator molar ratio (M/I) = 300], the block copolymers were water‐insoluble and showed only one glass‐transition temperature. With an increase in the concentration of PEO (M/I = 100 or 50) in the copolymer, two glass transitions were detected, indicating phase separation. The macroinitiator and the corresponding triblock copolymers were characterized with Fourier transform infrared, proton nuclear magnetic resonance, size exclusion chromatography analysis, dynamic mechanical analysis, and differential scanning calorimetry. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5049–5061, 2005  相似文献   

17.
This paper describes a new way to synthesize rod-coil block copolymers consisting of poly(p-phenylene) (PPP) as rigid rod and either polystyrene (PS) or poly(ethylene oxide) (PEO) as flexible coil. The Suzuki-coupling of the AB-type monomer 4-bromo-2,5-diheptylbenzeneboronic acid (1) under strictly proton-free conditions leads to the control of PPP endgroups and hence allows the synthesis of a variety of differently end-functionalized poly(p-phenylene)s. The poly(2,5-diheptyl-p-phenylene)-block-polystyrene (7) is then prepared via condensation via condensation of anionically polymerized living polystyrene ( 6 ) with α-(4-formylphenyl)-ω-phenyl-poly(2,5diheptyl-p-phenylene) ( 4 ). Toluenesulfonic acid catalyzed condensation of α-methyl-ω-amino-poly(oxyethylene) ( 8 ) with PPP 4 yields poly(2,5-diheptyl-p-phenylene)-block-poly(ethylene oxide) ( 9 ).  相似文献   

18.
This work reports the synthesis of several copolymers of poly(vinyl chloride)-b-poly(n-butyl acrylate)-b-Poly(vinyl chloride) prepared by single electron transfer/degenerative chain transfer mediated living radical polymerization (SET-DTLRP) in a two step process: first, a bifunctional macroinitiator of α,ω-di(iodo)poly(butyl acrylate) [α,ω-di(iodo)PBA] was synthesized by SET-DTLRP in water at 30 °C. The obtained macroinitiator was further reinitiated also by SET-DTLRP leading to the formation of the desired product. Several copolymers were synthesized in a 5L pilot reactor with different molecular weights and relative amounts of PBA and PVC. The possibility of synthesizing flexible materials made of PVC without using normal free plasticizes is extremely important for the industry. After processing the materials in a two-roll mill laboratorial equipment, the block copolymers were characterized concerning thermal and mechanical. The materials characterized in this study were prepared in a 5L pilot reactor under similar conditions to be used in industrial scale.  相似文献   

19.
The influence of molecular weight on thermal transitions and on their thermodynamic parameters is discussed for a random thermotropic liquid crystalline copolyether based on the reaction of a 1:1 molar mixture of 1,5-dibromopentane and 1,7-dibromoheptane with 4,4′-dihydroxy-α-methylstilbene. Optimum phase transfer catalyzed polyetherification reaction conditions were established for the synthesis of polymers containing bromoalkane chain ends only over a wide variety of molecular weights. All these copolyethers present a crystalline and an enantiotropic nematic mesophase over the entire range of molecular weights studied. Both the thermal transitions and their thermodynamic parameters are strongly molecular weight-dependent up to M n = 10,000–12,000, after which they remain constant. The enthalpies and entropies of isotropization of the copolyethers are higher than those of melting. This is in contrast to the same thermodynamic parameters of the corresponding homopolyethers. The enthalpies and entropies of isotropization of both homopolymers and copolymers present similar values, suggesting that copolymerization does decrease the degree of order in the crystalline phase but does not significantly change the alignment degree of the mesogenic units in the nematic mesophase.  相似文献   

20.
This paper describes the synthesis of a novel amphiphilic AB2 triarm star-shaped copolymer with A = non-toxic and biocompatible hydrophilic poly(ethylene oxide) (PEO) and B = biodegradable and hydrophobic poly(ε-caprolactone) (PCL). A series of AB2 triarm star-shaped copolymers with different molecular-weights for the PCL block were successfully synthesized by a three-step procedure. α-Methoxy-ω-epoxy-poly(ethylene oxide) (PEO-epoxide) was first synthesized by the nucleophilic substitution of α-methoxy-ω-hydroxy-poly(ethylene oxide) (MPEO) on epichlorohydrin. In a second step, the α-methoxy-ω,ω′-dihydroxy-poly(ethylene oxide) (PEO(OH)2) macroinitiator was prepared by the selective hydrolysis of the ω-epoxy end-group of the PEO-epoxide chain. Finally, PEO(OH)2 was used as a macroinitiator for the ring-opening polymerization (ROP) of ε-caprolactone (εCL) catalyzed by tin octoaote (Sn(Oct)2). PEO-epoxide, PEO(OH)2 and the AB2 triarm star-shaped copolymers were assessed by 1H NMR spectroscopy, size exclusion chromatography (SEC) and MALDI-TOF. The behavior of the AB2 triarm star-shaped copolymer in aqueous solution was studied by dynamic light scattering (DLS) and transmission electron microscopy (TEM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号