首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rate constants for the gas-phase reactions of the four oxygenated biogenic organic compounds cis-3-hexen-1-ol, cis-3-hexenylacetate, trans-2-hexenal, and linalool with OH radicals, NO3 radicals, and O3 have been determined at 296 ± 2 K and atmospheric pressure of air using relative rate methods. The rate constants obtained were (in cm3 molecule?1 s?1 units): cis-3-hexen-1-ol: (1.08 ± 0.22) × 10?10 for reaction with the OH radical; (2.72 ± 0.83) × 10?13 for reaction with the NO3 radical; and (6.4 ± 1.7) × 10?17 for reaction with O3; cis-3-hexenylacetate: (7.84 ± 1.64) × 10?11 for reaction with the OH radical; (2.46 ± 0.75) × 10?13 for reaction with the NO3 radical; and (5.4 ± 1.4) × 10?17 for reaction with O3; trans-2-hexenal: (4.41 ± 0.94) × 10?11 for reaction with the OH radical; (1.21 ± 0.44) × 10?14 for reaction with the NO3 radical; and (2.0 ± 1.0) × 10?18 for reaction with O3; and linalool: (1.59 ± 0.40) × 10?10 for reaction with the OH radical; (1.12 ± 0.40) × 10?11 for reaction with the NO3 radical; and (4.3 ± 1.6) × 10?16 for reaction with O3. Combining these rate constants with estimated ambient tropospheric concentrations of OH radicals, NO3 radicals, and O3 results in calculated tropospheric lifetimes of these oxygenated organic compounds of a few hours. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
Rate constants for the gas-phase reactions of the biogenically emitted monoterpene β-phellandrene with OH and NO3 radicals and O3 have been measured at 297 ± 2 K and atmospheric pressure of air using relative rate methods. The rate constants obtained were (in cm3 molecule?1 s?1 units): for reaction with the OH radical, (1.68 ± 0.41) × 10?10; for reaction with the NO3 radical, (7.96 ± 2.82) × 10?12; and for reaction with O3, (4.77 ± 1.23) × 10?17, where the error limits include the estimated uncertainties in the reference reaction rate constants. Using these rate constants, the lifetime of β-phellandrene in the lower troposphere due to reaction with these species is calculated to be in the range of ca. 1–8 h, with the OH radical reaction being expected to dominate over the O3 reaction as a loss process for β-phellandrene during daylight hours.  相似文献   

3.
Rate constants have been determined at 296 ± 2 K for the gas phase reaction of NO3 radicals with a series of aromatics using a relative rate technique. The rate constants obtained (in cm3 molecule?1 s?1 units) were: benzene, <2.3 × 10?17; toluene, (1.8 ± 1.0) × 10?17; o? xylene, (1.1 ± 0.5) × 10?16; m? xylene, (7.1 ± 3.4) × 10?17; p? xylene, (1.4 ± 0.6) × 10?16; 1,2,3-trimethylbenzene, (5,6 ± 2.6) × 10?16; 1,2,4-trimethylbenzene (5.4 - 2.5) × 10?16; 1,3,5-trimethylbenzene, (2.4 ± 1.1) × 10?16; phenol, (2.1 ± 0.5) × 10?12; methoxybenzene, (5.0 ± 2.8) × 10?17; o-cresol, (1.20 ± 0.34) × 10?11; m-cresol, (9.2 ± 2.4) × 10?12; p-cresol, (1.27 ± 0.36) × 10?11; and benzaldehyde, (1.13 ± 0.25) × 10?15. These kinetic data, together with, in the case of phenol, product data, suggest that these reactions proceed via H-atom abstraction from the substituent groups. The magnitude of the rate constants for the hydroxy-substituted aromatics indicates that the nighttime reaction of NO3 radicals with these aromatics can be an important loss process for both NO3 radicals and these organics, as well as being a possible source of nitric acid, a key component of acid deposition.  相似文献   

4.
Rate constants for the gas phase reactions of O3 and OH radicals with 1,3-cycloheptadiene, 1,3,5-cycloheptatriene, and cis- and trans-1,3,5-hexatriene and also of O3 with cis-2,trans-4-hexadiene and trans -2,trans -4-hexadiene have been determined at 294 ± 2 K. The rate constants determined for reaction with O3 were (in cm3 molecule-1s?1 units): 1,3-cycloheptadiene, (1.56 ± 0.21) × 10-16; 1,3,5-cycloheptatriene, (5.39 ± 0.78) × 10?17; 1,3,5-hexatriene, (2.62 ± 0.34) × 10?17; cis?2,trans-4-hexadiene, (3.14 ± 0.34) × 10?16; and trans ?2, trans -4-hexadiene, (3.74 ± 0.61) × 10?16; with the cis- and trans-1,3,5-hexatriene isomers reacting with essentially identical rate constants. The rate constants determined for reaction with OH radicals were (in cm3 molecule?1 s?1 units): 1,3-cycloheptadiene, (1.31 ± 0.04) × 10?10; 1,3,5-cycloheptatriene, (9.12 × 0.23) × 10?11; cis-1,3,5-hexatriene, (1.04 ± 0.07) × 10?10; and trans 1,3,5-hexatriene, (1.04 ± 0.17) × 10?10. These data, which are the first reported values for these di- and tri-alkenes, are discussed in the context of previously determined O3 and OH radical rate constants for alkenes and cycloalkenes.  相似文献   

5.
The kinetics of the gas-phase reactions of 1,4-benzodioxan, 2,3-dihydrobenzofuran, and 2,3-benzofuran with OH radicals and O3 have been studied at 298 ± 2 K and atmospheric pressure of air and the products have also been investigated. 1,4-Benzodioxan and 2,3-dihydrobenzofuran were chosen as volatile model compounds for dibenzo-p-dioxin and dibenzofuran, respectively. The rate constants, or upper limits thereof, for the O3 reactions were (in cm3 molecule?1 s?1 units): 1,4-benzodioxan, <1.2 × 10?20; 2,3-dihydrobenzofuran, <1 × 10?19; and 2,3-benzofuran, (1.83 ± 0.21) × 10?18. Using a relative rate method, the rate constants for the OH radical reactions (in cm3 molecule?1 s?1 units) were: 1,4-dibenzodioxan, (2.52 ± 0.38) × 10?11; 2,3-dihydrobenzofuran, (3.66 ± 0.56) × 10?11; and 2,3-benzofuran, (3.73 ± 0.74) × 10?11. Salicylaldehyde was observed as a product of the OH radical-initiated and O3 reactions of 2,3-benzofuran, with measured formation yields of 0.26 ± 0.05 and 0.13 ± 0.07, respectively.  相似文献   

6.
The nitroarene products of the gas-phase reactions of acenaphthylene, acenaphthene, phenanthrene, and anthracene-d10 with N2O5 and the OH radical (in the presence of NOx) are reported. The calculated atmospheric lifetimes of these polycyclic aromatic hydrocarbons (PAH), as well as those of naphthalene, 1- and 2-methylnaphthalene, biphenyl, fluoranthene, pyrene, and acephenanthrylene, show that reaction with the OH radical is the dominant loss process for these PAH, with the exception of acenaphthylene, acenaphthene, and acephenanthrylene which contain an external cyclopenta-fused ring. For these latter PAH, reaction with the NO3 radical, and for acenaphthylene and acephenanthrylene reaction with O3, are also expected to be important atmospheric loss processes. The nitroarenes observed as products of the atmospherically-important gas-phase reactions of the PAH in environmental chamber studies are compared with the nitroarenes measured in ambient air samples collected in California. It is concluded that although nitroarenes are formed in low yields (?5%) from the OH radical-initiated reactions of the PAH, atmospheric formation of nitroarenes may contribute significantly to ambient nitroarene concentrations.  相似文献   

7.
The kinetics of the gas-phase reactions of naphthalene, 2-methylnaphthalene, and 2,3-dimethylnaphthalene with O3 and with OH radicals have been studied at 295 ± 1 K in one atmosphere of air. Upper limit rate constants for the O3 reactions of <3 × 10?19, <4 × 10?19, and <4 × 10?19 cm3 molecule?1 s?1 were obtained for naphthalene, 2-methylnaphthalene, and 2,3-dimethylnaphthalene, respectively. For the OH radical reactions, rate constants of (in units of 10?11 cm3 molecule?1 s?1) 2.59 ± 0.24, 5.23 ± 0.42, and 7.68 ± 0.48 were determined for naphthalene, 2±methylnaphthalene, and 2,3-dimethylnaphthalene, respectively. These data show that under atmospheric conditions these naphthalenes will react mainly with the OH radical, with life-times due to this reaction ranging from ca. 11 h for naphthalene to ca. 4 h for 2,3-dimethylnaphthalene.  相似文献   

8.
The rate coefficients of the reactions of CN and NCO radicals with O2 and NO2 at 296 K: (1) CN + O2 → products; (2) CN + NO2 → products; (3) NCO + O2 → products and (4) NCO + NO2 → products have been measured with the laser photolysis-laser induced fluorescence technique. We obtained k1 = (2.1 ± 0.3) × 10?11 and k2 = (7.2 ± 1.0) × 10?11 cm3 molecule?t s?1 which agree well with published results. As no reaction was observed between NCO and O2 at 297 K, an upper limit of k3 < 4 × 10?17 cm3 molecule?1 S?1 was estimated. The reaction of NCO with NO2 has not been investigated previously. We measured k4 = (2.2 ± 0.3) × 10?11 cm3 molecule?1 s?1 at 296 K.  相似文献   

9.
Azulene, which is isomeric with naphthalene, was studied to determine whether it behaves like a polycyclic aromatic hydrocarbon or an alkene in its gas-phase reactions with OH and NO3 radicals and O3. Using relative rate methods, rate constants for the reactions of azulene with OH and NO3 radicals and O3 of (2.73 ± 0.56) × 10?10 cm3 molecule?1 s?1, (3.9) × 10?10 cm3 molecule?1 s?1, and <7 × 10?17 cm3 molecule?1 s?1, respectively, were obtained at 298 ± 2 K. The observation that the NO3 radical reaction did not involve NO2 in the rate determining step indicates that azulene behaves more like an alkene than a polycyclic aromatic hydrocarbon in this reaction. No conclusive evidence for the formation of nitroazulene(s) from either the OH or NO3 radical-initiated reaction of azulene (in the presence of NOx) was obtained.  相似文献   

10.
The reactions of CCl3 with O(3P) and O2 and those of CCl3O2 with NO have been studied at 295 K using discharge flow methods with helium as the bath gas. The rate coefficient for the reaction of CCl3 with O was found to be (4.2 ± 0.6) × 10?11 cm3/s and that for CCl3O2 with NO was (18.6 ± 2.8) × 10?12 cm3/s with both coefficients independent of [He]. For reaction between CCl3 and O2 the rate coefficient was found to increase from 1.51 7times; 10?14 cm3/s to 7.88 × 10?14 cm3/s as the [He] increased from 3.5 × 1016 cm?3 to 2.7 × 1017 cm?3. There was no evidence for a direct two-body reaction, and it is concluded that the only product of this reaction is CCl3O2. Examination of these results for CCl3 + O2 in terms of current simplified falloff treatment suggests that the high-pressure limit for this reaction is ~ 2.5 × 10?12 cm3/s, which may be compared with a direct measurement of the high-pressure limit of 5 × 10?12 cm3/s. A value of (5.8 ± 0.6) × 10?31 cm6/s has been obtained for k0, the coefficient in the low-pressure region. This value is compared with corresponding values found earlier for the (CH3, O2) and (CF3, O2) systems and with estimates based on unimolecular rate theory.  相似文献   

11.
The gas-phase reaction of the NO3 radical with NO2 was investigated, using a flash photolysis-visible absorption technique, over the total pressure range 25–400 Torr of nitrogen or oxygen diluent at 298 ± 2 K. The absolute rate constants determined (in units of 10?13 cm3 molecule?1 s?1) at 25, 100, and 400 Torr total pressure were, respectively, (4.0 ± 0.5), (7.0 ± 0.7), and (10 ± 2) for M = N2 and (4.5 ± 0.5), (8.0 ± 0.4), and (8.8 ± 2.0) for M = O2. These data show that the third-body efficiencies of N2 and O2 are identical, within the error limits, and that previous evaluations for M = N2 are applicable to the atmosphere. In addition, upper limits were determined for the rate constants of the reactions of the NO3 radical with methanol, ethanol, and propan-2-ol of ?6 × 10?16, ?9 × 10?16, and ?2.3 × 10?15 cm3 molecule?1 s?1, respectively, at 298 ± 2 K.  相似文献   

12.
The new flowtube reactor employing dissociative electron attachment to produce radicals and high-pressure photoionization in the mass spectrometric detection of radicals is described. The system has been applied to a study of the association reactions of CHCl2 and CCl3 with O2 in a great excess of helium at total densities below 1017 cm?3 over the temperature range 286 to 332 K. Both reactions display a strong negative temperature coefficient. The results can be parameterized in the form k0(CHCl2 + O2) = (4.3 ± 0.2) × 10?31(T/300)?6.7±0.7 cm6 s?1, k0(CCl3 + O2) = (2.7 ± 0.2) × 10?31(T/300)?8.7±1.0 cm6 s?1. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
The kinetics of the gas-phase reactions of OH radicals, NO3 radicals, and O3 with indan, indene, fluorene, and 9,10-dihydroanthracene have been studied at 297 ± 2 K and atmospheric pressure of air. The rate constants, or upper limits thereof, for the O3 reactions were (in cm3 molecule−1 s−1 units): indan, < 3 × 10−19; indene, (1.7 ± 0.5) × 10−16, fluorene, < 2 × 10−19; and 9,10-dihydroanthracene, (9.0 ± 2.0) × 10−19. Using a relative rate method, the rate constants for the OH radical and NO3 radical reactions, respectively, were (in cm3 molecule−1 s−1 units): indan, (1.9 ± 0.5) × 10−11 and (6.6 ± 2.0) × 10−15; indene, (7.8 ± 2.0) × 10−11 and (4.1 ± 1.5) × 10−12; fluorene, (1.6 ± 0.5) × 10−11 and (3.5 ± 1.2) × 10−14; and 9,10-dihydroanthracene, (2.3 ± 0.6) × 10−11 and (1.2 ± 0.4) × 10−12. These kinetic data were used to assess the relative contributions of the various reaction pathways. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 299–309, 1997.  相似文献   

14.
Pulse radiolysis was used to study the kinetics of the reactions of CH3C(O)CH2O2 radicals with NO and NO2 at 295 K. By monitoring the rate of formation and decay of NO2 using its absorption at 400 and 450 nm the rate constants k(CH3C(O)CH2O2+NO)=(8±2)×10−12 and k(CH3C(O)CH2O2+NO2)=(6.4±0.6)×10−12 cm3 molecule−1 s−1 were determined. Long path length Fourier transform infrared spectrometers were used to investigate the IR spectrum and thermal stability of the peroxynitrate, CH3C(O)CH2O2NO2. A value of k−6≈3 s−1 was determined for the rate of thermal decomposition of CH3C(O)CH2O2NO2 in 700 torr total pressure of O2 diluent at 295 K. When combined with lower temperature studies (250–275 K) a decomposition rate of k−6=1.9×1016 exp (−10830/T) s−1 is determined. Density functional theory was used to calculate the IR spectrum of CH3C(O)CH2O2NO2. Finally, the rate constants for reactions of the CH3C(O)CH2 radical with NO and NO2 were determined to be k(CH3C(O)CH2+NO)=(2.6±0.3)×10−11 and k(CH3C(O)CH2+NO2)=(1.6±0.4)×10−11 cm3 molecule−1 s−1. The results are discussed in the context of the atmospheric chemistry of acetone and the long range atmospheric transport of NOx. © John Wiley & Sons, Inc. Int J Chem Kinet: 30: 475–489, 1998  相似文献   

15.
Rate constants for the reactions of O3 and OH radicals with furan and thiophene have been determined at 298 ± 2 K. The rate constants obtained for the O3 reactions were (2.42 ± 0.28) × 10?18 cm3/molec·s for furan and <6 ×10?20 cm3/molec·s for thiophene. The rate constants for the OH radical reactions, relative to a rate constant for the reaction of OH radicals with n-hexane of (5.70 ± 0.09) × 10?12 cm3/molec·s, were determined to be (4.01 ± 0.30) × 10?11 cm3/molec·s for furan and (9.58 ± 0.38) × 10?12 cm3/molec·s for thiophene. There are to date no reported rate constant data for the reactions of OH radicals with furan and thiophene or for the reaction of O3 with furan. The data are compared and discussed with respect to those for other alkenes, dialkenes, and heteroatom containing organics.  相似文献   

16.
CS radicals have been produced by photodissociation of CS2 at 193 nm and their disappearance monitored by LIF. The vibrationally excited CS radicals rapidly relax to CS(ν = 0). At 298 K, the rate coefficients for CS(ν = 0) reactions with O2, O3 and NO2 are (2.9 ± 0.4) × 10?19, (3.0 ± 0.4) × 10?16 and (7.6 ± 1.1) × 10?17 cm3 molecule?1 s?1 respectively. The quenching of CS(A 1II)ν=0 by He has a rate coefficient of (1.3 ± 0.2) × 10?12 cm3 molecule?1 s?1.  相似文献   

17.
The kinetics of the gas-phase reactions of the OH radical with (C2H5O)3PO and (CH3O)2P(S)Cl and of the reactions of NO3 radicals and O3 with (CH3O)2P(S)Cl have been studied at room temperature. Using a relative rate technique, the rate constants determined for the reactions of the OH radical with (C2H5O)3PO and (CH3O)2P(S)Cl at 296 ± 2 K and 740 torr total pressure of air were (5.53 ± 0.35) × 10?11 and (5.96 ± 0.38) × 10?11 cm3 molecule?1 s?1, respectively. Upper limits to the rate constants for the NO3 radical and O3 reactions with (CH3O)2P(S)Cl of <3 × 10?14 cm3 molecule?1 s?1 and <2 × 10?19 cm3 molecule?1 s?1, respectively, were obtained. These data are compared and discussed with previous literature data for organophosphorus compounds.  相似文献   

18.
Rate constants for the gas‐phase reactions of CH3OCH2CF3 (k1), CH3OCH3 (k2), CH3OCH2CH3 (k3), and CH3CH2OCH2CH3 (k4) with NO3 radicals were determined by means of a relative rate method at 298 K. NO3 radicals were prepared by thermal decomposition of N2O5 in a 700–750 Torr N2O5/NO2/NO3/air gas mixture in a 1‐m3 temperature‐controlled chamber. The measured rate constants at 298 K were k1 = (5.3 ± 0.9) × 10?18, k2 = (1.07 ± 0.10) × 10?16, k3 = (7.81 ± 0.36) × 10?16, and k4 = (2.80 ± 0.10) × 10?15 cm3 molecule?1 s?1. Potential energy surfaces for the NO3 radical reactions were computationally explored, and the rate constants of k1k5 were calculated according to the transition state theory. The calculated values of rate constants k1k4 were in reasonable agreement with the experimentally determined values. The calculated value of k5 was compared with the estimate (k5 < 5.3 × 10?21 cm3 molecule?1 s?1) derived from the correlation between the rate constants for reactions with NO3 radicals (k1k4) and the corresponding rate constants for reactions with OH radicals. We estimated the tropospheric lifetimes of CH3OCH2CF3 and CHF2CF2OCH2CF3 to be 240 and >2.4 × 105 years, respectively, with respect to reaction with NO3 radicals. The tropospheric lifetimes of these compounds are much shorter with respect to the OH reaction. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 490–497, 2009  相似文献   

19.
Using relative rate methods, rate constants have been measured for the gas-phase reactions of 3-methylfuran with NO3 radicals and O3 at 296 ± 2 K and atmospheric pressure of air. The rate constants determined were (1.31 ± 0.461) × 10−11 cm3 molecule−1 s−1 for the NO3 radical reaction and (2.05 ± 0.52) × 10−17 cm3 molecule−1 s−1 for the O3 reaction, where the indicated errors include the estimated overall uncertainties in the rate constants for the reference reactions. Based on the cyclohexanone plus cyclohexanol yield in the presence of sufficient cyclohexane to scavenge > 95% of OH radicals formed, it is estimated that the O3 reaction leads to the formation of OH radicals with a yield of 0.59, uncertain to a factor of ca. 1.5. In the troposphere, 3-methylfuran will react dominantly with the OH radical during daylight hours, and with the NO3 radical during nighttime hours for nighttime NO3 radical concentrations > 107 molecule cm −3. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
Reactions of ozone with simple olefins have been studied between 6 and 800 mtorr total pressure in a 220-m3 reactor. Rate constants for the removal of ozone by an excess of olefin in the presence of 150 mtorr oxygen were determined over the temperature range 280 to 360° K by continuous optical absorption measurements at 2537 Å. The technique was tested by measuring the rate constants k1 and k2 of the reactions (1) NO + O3 → NO2 + O2 and (2) NO2 + O3 rarr; NO3 + O2 which are known from the literature. The results for NO, NO2, C2H4, C3H6, 2-butene (mixture of the isomers), 1,3→butadiene, isobutene, and 1,1 -difluoro-ethylene are 1.7 × 10?1 4 (290°K), 3.24 × 10?17 (289°K), 1.2 × 10?1 4 exp (–4.95 ± 0.20/RT), 1.1 × 10?1 4 exp (–3.91 ± 0.20/RT), 0.94 × 10?1 4 exp ( –2.28 ± 0.15/RT), 5.45 ± 10?1 4 exp ( –5.33 ± 0.20/RT), 1.8 ×10?17 (283°K), and 8 × 10?20 cm3/molecule ·s(290°K). Productformation from the ozone–propylene reaction was studied by a mass spectrometric technique. The stoichiometry of the reaction is near unity in the presence of molecular oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号