首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The S-shaped diffuser which connects the exit of the compressor to the inlet of the combustion chamber of the Allison 250 gas turbine has been investigated using the Shear-Stress Transport turbulence model (SST) and the commercial code ANSYS-CFX. The diffuser geometry includes an initial conical diffuser which smoothly transitions into a constant cross-section S-duct. The numerical model and setup were validated using both in-house processed experimental data and experimental data from the literature on a similar geometry. The stream-wise velocity profile was observed to flatten in the initial divergent section, and then the region of the flow with the highest velocity is pushed toward the outer surface of the first bend, with a secondary-flow in the plane of the cross-section. This distortion of the stream-wise velocity intensified when the inlet turbulence intensity was decreased or when the Reynolds number was increased. An increase of the Reynolds number also translated into higher static pressure recovery potential and lower wall friction coefficients. Six variations of the diffuser geometry were considered, all having the same total cross-sectional area ratio and centreline offset. The qualitative results were the same as those of the Allison 250 diffuser, but unlike the base geometry, all the considered variants showed separated-flow regions (and reversed-flow regions in some cases) of different sizes and at different locations. The performance indicators for the Allison 250 S-shaped diffuser were the highest overall. Most interestingly, the current duct geometry outperformed its variant with a cross-sectional area expansion extending over its entire length, which is the most common inlet duct configuration.  相似文献   

2.
The results of experimental and numerical investigation of flow in a circular conical diffuser with a small conicity angle ensuring separationless flow are presented. The measurements are carried out in an air flow with the Reynolds number Re2 in the diffuser exit section ranging from 600 to 3000. A considerable effect of the channel expansion on the flow pattern is found to exist. It is shown that, as distinct from a tube, in which only laminar flow can be realized as steady for Re < 2000, in the exit section of a diffuser with the generator slope of 0.3° and a length equal to 70 entry diameters a developed turbulent flow is formed for Re2 > 1000. For Re2 > 1300 this flow is steady, that is, almost independent of the turbulence level at the entry, and is determined by the Reynolds number Re2 in the exit section. For Re2 ≈ 1000 the turbulent flow continuously goes over into a laminar flow. The flow parameters measured at the diffuser exit correspond to calculations in accordance with the threeequation turbulence model.  相似文献   

3.
Experiments were conducted for the flow in a straight-walled 3D diffuser fed by a fully developed turbulent duct flow. Previous work found that this diffuser has a stable 3D separation bubble whose configuration is affected by the secondary flows in the upstream duct. Dielectric barrier discharge plasma actuators were used to produce low-momentum wall jets to determine if the separation behavior could be modified by weak forcing. Actuators producing a streamwise force along the wall where separation occurred in the baseline flow had a relatively small effect. However, spanwise acting plasma actuators that produced a pair of streamwise vortices in the inlet section of the diffuser had a strong effect on the diffuser pressure recovery. The diffuser performance could be either improved or degraded depending on the actuation parameters, including the actuator modulation frequency, duty cycle, and drive voltage. Velocity profile measurements in the diffuser inlet showed that the streamwise vortices affect the uniformity of the streamwise mean velocity accounting for some of the performance changes. However, phase-locked hotwire measurements at the diffuser exit indicate that the periodic nature of the forcing also plays an important role for cases with enhanced pressure recovery.  相似文献   

4.
The sound field in a circular pipe generated by a concentric jet flow entering the pipe is studied. In the first case the air flow enters the pipe through a convergent nozzle only. In the second case a short diffuser is attached to the nozzle. When the diffuser half angle is small enough to ensure attached flow conditions, the sound pressure level in the duct is reduced over the entire frequency range measured. When the diffuser angle is increased up to the point where flow separation occurs, an increase in the duct sound pressure level is observed. It is shown by means of cross-correlation measurements involving the unsteady wall pressures in the diffuser and the sound pressure in the duct that the increased sound levels are in fact caused by the flow separation in the diffuser.  相似文献   

5.
Modifications of the turbulent separated flow in an asymmetric three-dimensional diffuser due to inlet condition perturbations were investigated using conventional static pressure measurements and velocity data acquired using magnetic resonance velocimetry (MRV). Previous experiments and simulations revealed a strong sensitivity of the diffuser performance to weak secondary flows in the inlet. The present, more detailed experiments were conducted to obtain a better understanding of this sensitivity. Pressure data were acquired in an airflow apparatus at an inlet Reynolds number of 10,000. The diffuser pressure recovery was strongly affected by a pair of longitudinal vortices injected along one wall of the inlet channel using either dielectric barrier discharge plasma actuators or conventional half-delta wing vortex generators. MRV measurements were obtained in a water flow apparatus at matched Reynolds number for two different cases with passive vortex generators. The first case had a pair of counter-rotating longitudinal vortices embedded in the boundary layer near the center of the expanding wall of the diffuser such that the flow on the outsides of the vortices was directed toward the wall. The MRV data showed that the three-dimensional separation bubble initially grew much slower causing a rapid early reduction in the core flow velocity and a consequent reduction of total pressure losses due to turbulent mixing. This produced a 13% increase in the overall pressure recovery. For the second case, the vortices rotated in the opposite sense, and the image vortices pushed them into the corners. This led to a very rapid initial growth of the separation bubble and formation of strong swirl at the diffuser exit. These changes resulted in a 17% reduction in the overall pressure recovery for this case. The results emphasize the extreme sensitivity of 3D separated flows to weak perturbations.  相似文献   

6.
Using the Navier-Stokes equations in conjunction with the k-? model of turbulence, the characteristics of flow in the region downstream of a conical diffuser with 5° angle of inclination are calculated. Two representative stations 1D2 and 10D2 after the diffuser exit are selected for comparison against experimental results. The calculations indicate an underestimation of mean velocity and turbulence kinetic energy at the first station, while satisfactory agreement is obtained for the mean velocity at the second station. The use of a modified k-? model sensitive to adverse pressure conditions improves the predictions considerably. The effect of inlet properties and Reynolds number on the flow characteristics at the above stations is studied using various inlet profiles and a range of Reynolds numbers based on the inlet diameter from 50 000 to 280 000.  相似文献   

7.
Multiple nozzle combustors, under certain conditions, may result in flowfields that differ between nozzles in an alternating pattern. Previous work has provided some clues on the parameters which govern the appearance of this behavior, but there is a lack of systematic studies. A series of non-reacting simulations of adjacent swirling flows is used to investigate the effect of nozzle exit flare angle and swirl number on the presence of the alternating flow pattern. Two-nozzle simulations are shown to accurately predict if an asymmetric flow characteristic appears and are therefore used in the parametric investigation. Alternating flow patterns are predicted at nozzle exit flare angles of 105 degrees (for a swirl number of 0.79) and 120 degrees (for a swirl number of 0.69 and 0.79). Under conditions close to the stability boundary between symmetric and asymmetric flows, the nozzle exit flare and increased swirl number push the shear layers against the dome wall so that the flows between each nozzle are largely opposite in direction. An increase in nozzle exit flare above 120° results in separated flows exiting from the inlet and a return to a symmetric flow state. This is consistent with a proposed physical mechanism based on hydrodynamic stability in turbulent opposed jets.  相似文献   

8.
We present numerical attempts of radiative transfer in a relativistic scattering flow that can produce gamma rays using a three-dimensional Monte Carlo code. We prepared an initial background flowfield obtained from hydrodynamical simulation of a relativistic jet in which Thomson scattering dominates compared to absorption, and solved the radiative transfer equation for the background evolved by a simple expansion model. Since a large number of sample particles is required for an accurate computation, we have parallelized the Monte Carlo code in order to obtain solutions in a practical computational time even for a long-term simulation coupled with a time-dependent flowfield. Using this code, higher parallel efficiency is achieved with larger number of particles. The obtained light curve from the simple model shows a signal of the transition from the opaque post-shock flow to the transparent regime as the flow expands, and the high-energy photons are generated by not only the Doppler boosting but also the inverse Compton scattering.  相似文献   

9.
A mathematical model of a steady viscous incompressible fluid flow in a channel with exit conditions different from the Dirichlet conditions is considered. A variational inequality is derived for the formulated subdifferential boundary-value problem, and the structure of the set of its solutions is studied. For two-ption on the low Reynolds number is proved. In the three-dimensional case, a class of constraints on the tangential component of velocity at the exit, which guarantees solvability of the variational inequality, is found.  相似文献   

10.
A new code for simulating convection in a horizontal layer of fluid is described. The code can be used to study the usual Rayleigh –Bénard convection problem but can also incorporate internal heating, rotation and the vortex force responsible for Langmuir circulation. Boundary conditions in the horizontal directions are periodic, but a wide range of conditions may be imposed on the upper and lower boundaries. A novel feature of the method is the way in which these boundary conditions are implemented through the following analytical/numerical technique. The governing partial differential equations are reduced to a number of inhomogeneous second-order ODEs for the horizontal Fourier modes. The solutions to these are then written as the sum of a particular integral and a complementary function. The former is easily computed (numerically) without regard to the boundary conditions and the latter is then selected (analytically/numerically) to ensure that the boundary conditions are met. We apply our code to the problem of highly supercritical thermal convection in a shear flow. We compare our results with simulations in the literature and, by integrating over a longer time interval, find flow features not observed in the previous simulations, including stable time-dependent states, multiple stable equilibria and chaos. © 1997 John Wiley & Sons, Ltd.  相似文献   

11.
This paper concerned with the unsteady rotational flow of fractional Oldroyd-B fluid, between two infinite coaxial circular cylinders. To solve the problem we used the finite Hankel and Laplace transforms. The motion is produced by the inner cylinder that, at time t=0+, is subject to a time-dependent rotational shear. The solutions that have been obtained, presented under series form in terms of the generalized G functions, satisfy all imposed initial and boundary conditions. The corresponding solutions for ordinary Oldroyd-B, fractional and ordinary Maxwell, fractional and ordinary second grade, and Newtonian fluids, performing the same motion, are obtained as limiting cases of general solutions.  相似文献   

12.
The results of a special investigation of the diffuser flowfield are presented for two models of curvilinear diffuser channels with annular and rectangular cross-sections. The flow is visualized and the total pressure fields are measured by means of low-inertia transducers. At the same time, the flows are numerically calculated using commercial programs, together with codes developed by the authors. In these calculations the stationary and time-dependent Reynolds equations closed by different turbulence models, as well as the time-dependent Navier-Stokes equations, were integrated. A considerable difference between the measured data and the results of the numerical calculations in the stationary formulation is found to exist. At the same time, it has been possible to describe the occurrence of spatial inhomogeneities, the flow pattern, and the level of the experimentally observed aerodynamic losses on the basis of the solution of time-dependent problems.  相似文献   

13.
This paper deals with the study of unsteady flow of a Maxwell fluid with fractional derivative model, between two infinite coaxial circular cylinders, using Laplace and finite Hankel transforms. The motion of the fluid is produced by the inner cylinder that, at time t = 0+, is subject to a time-dependent longitudinal shear stress. Velocity field and the adequate shear stress are presented under series form in terms of the generalized G and R functions. The solutions that have been obtained satisfy all imposed initial and boundary conditions. The corresponding solutions for ordinary Maxwell and Newtonian fluids are obtained as limiting cases of general solutions. Finally, the influence of the pertinent parameters on the fluid motion as well as a comparison between the three models is underlined by graphical illustrations.  相似文献   

14.
Laser velocimetry measurements were made within a laboratory radial vaned diffuser with three different blade configurations. Measurements were made through passages with four, six and eight blades installed at off design conditions. Also, in the eight blade diffuser measurements were made between the blade passage exit and diffuser exit so that the complete secondary flow could be defined. The flow was found to separate from the blades and form large separation zones. The separation zones consisted primarily of two vortices rotating in opposite directions. At the passage exit the separation region encompassed 23% of the circumferential area for the four blade diffuser, 45% for the six blade and 40% in the eight blade diffuser. Separation occurred at 23%, 27% and 50% from the leading edge of the blades for the 4, 6 and 8 bladed diffusers, indicating that more blades better controlled the separation. Turbulence intensities ranged from approximately 5% to 15% in the primary flow and reached a few hundred percent in the secondary flow within the separation regions.  相似文献   

15.
Results of a numerical study of the influence of a positive pressure gradient in an axisymmetric diffuser with sudden expansion of a circular tube on aerodynamics and turbulent heat transfer in regions of flow separation, reattachment, and relaxation are reported. The air flow prior to separation is assumed to be fully turbulent and to have a constant Reynolds number Re D1 = 2.75 · 104. The tube expansion degree is 1.78, and the apex half-angle of the diffuser is varied from 0 to 5°. It is found that an increase in the pressure gradient leads to a decrease in the heat transfer intensity in the separation region, and the maximum heat release point moves away from the flow separation point. The calculated results are compared with experimental data. It is shown that the behavior of the separated flow behind the step becomes significantly different as the streamwise pressure gradient changes.  相似文献   

16.
This paper presents an application of adaptive remeshing to the prediction of turbulent separated flows. The paper shows that the κ - ε model with wall functions can predict separated flows along smooth curved surfaces. Success is achieved if the wall functions exhibit values of y+ close to 30, and if meshes are fine enough to guarantee that wall function boundary conditions are grid converged. Adaptive remeshing proves to be a very cost effective tool in this context. The methodology is demonstrated on a problem possessing a closed form solution to establish the performance and reliability of the proposed approach. The method is then applied to prediction of turbulent flow in an annular, axisymmetric turnaround duct (TAD). Predictions from two computational models of the TAD are compared with experimental measurements. The importance of appropriate meshes to achieve grid independent solutions is demonstrated in both cases. Better agreement with measurements is obtained when partially developed profiles of u, κ, and ε are specified at the TAD inlet.  相似文献   

17.
A combined experimental and numerical investigation of flow control actuation in a short, rectangular, diffusing S-shape inlet duct using a two-dimensional tangential control jet was conducted. Experimental and numerical techniques were used in conjunction as complementary techniques, which are utilized to better understand the complex flow field. The compact inlet had a length-to-hydraulic diameter ratio of 1.5 and was investigated at a free-stream Mach number of 0.44. In contrast to the baseline flow, where the flow field was fully separated, the two-dimensional control jet was able to eliminate flow separation at the mid-span portion of the duct and changed considerably the three-dimensional flow field, and ultimately, the inlet performance. A comparison between the baseline (no actuation) and forced flow fields showed that secondary flow structures dominated both flow fields, which is inevitably associated with total pressure loss. Contrary to the baseline case, the secondary flow structures in the forced case were established from the core flow stagnating on the lower surface of the duct close to the aerodynamic interface plane. High fidelity spectral analysis of the experimental results at the inlet’s exit plane showed that the baseline flow field was dominated by pressure fluctuations corresponding to a Strouhal number based on hydraulic diameter of 0.26. Not only did the two-dimensional tangential control jet improve the time-averaged pressure recovery at the inlet exit plane (13.3% at the lower half of the aerodynamic interface plane), it essentially eliminated the energy content of the distinct unsteady fluctuations which characterized the baseline flow field. This result has several implications for the design of a realistic engine inlet; furthermore, it depicts that a single non-intrusive static pressure measurement at the surface of the duct can detect flow separation.  相似文献   

18.
胡晨星  杨策 《力学学报》2019,51(6):1775-1784
径向无叶扩压器的全局稳定性可能受到核心主流失稳,出口回流与壁面边界层分离等因素影响,对于宽无叶扩压器,无黏核心主流与壁面边界层流动对不稳定扰动诱发的作用机理是当前研究的重点.本文首先通过数值计算获得了大宽度比孤立无叶扩压器平均流动,然后基于小扰动理论和周向均质假设,分别对欧拉方程与 Navier-Stokes 方程进行线性化,建立了基于无黏核心流动的稳定性分析方法,以及基于涡黏性与分子黏性的混合稳定性分析方法;通过与实验结果的对比,验证了混合稳定性分析方法预测所得流动失稳频率和全局直接模态的准确性;最后基于伴随方法获得了特征值的结构敏感性,揭示了不同黏性处理条件下宽无叶扩压器内全局不失稳扰动的源发区域.在只考虑核心主流的无黏条件下,宽无叶扩压器内流动不稳定扰动来源于流场中部,为二维的离心失稳;在同时考虑核心主流与边界层的作用时,宽无叶扩压器不稳定扰动不仅来源于扩压器流场中部的核心主流,壁面回流对于不稳定扰动的产生了重要影响.   相似文献   

19.
The two‐dimensional convection–diffusion‐type equations are solved by using the boundary element method (BEM) based on the time‐dependent fundamental solution. The emphasis is given on the solution of magnetohydrodynamic (MHD) duct flow problems with arbitrary wall conductivity. The boundary and time integrals in the BEM formulation are computed numerically assuming constant variations of the unknowns on both the boundary elements and the time intervals. Then, the solution is advanced to the steady‐state iteratively. Thus, it is possible to use quite large time increments and stability problems are not encountered. The time‐domain BEM solution procedure is tested on some convection–diffusion problems and the MHD duct flow problem with insulated walls to establish the validity of the approach. The numerical results for these sample problems compare very well to analytical results. Then, the BEM formulation of the MHD duct flow problem with arbitrary wall conductivity is obtained for the first time in such a way that the equations are solved together with the coupled boundary conditions. The use of time‐dependent fundamental solution enables us to obtain numerical solutions for this problem for the Hartmann number values up to 300 and for several values of conductivity parameter. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
A numerical and experimental study of the time-dependent hydrodynamic removal of a contaminated fluid from a cavity on the floor of a duct is presented. The duct flow has a parabolic inlet velocity profile and laminar flows are considered in a Reynolds number range between 50 and 1600 based on the duct height. The properties of the contaminated cavity fluid are assumed to be the same as for the fluid flowing in the duct. Attention is focussed on the convective transport of contaminated fluid out from the cavity and the effect of duct flow acceleration on the cleaning process. Passive markers which are convected with the flow are used in the numerical simulation for the purpose of identifying the contaminated cavity fluid. It is shown that the cleansing of the cavity is more pronounced during the unsteady start-up of the duct flow and the rate of cleaning decreases as the flow reaches a steady state. The cleaning process is enhanced as the cavity aspect ratio is increased and as the duct Reynolds number increases. A ‘volumetric’ approach based on the spread of markers is shown to be useful in determining the fraction of the cavity that remains contaminated after steady conditions have been reached. The distribution of the contaminant in a cavity during the unsteady stage and after steady conditions are reached are identified using passive markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号