首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The socium cryptates of the macrobicyclic ligands 1–6 have been synthesized by direct macrobicyclisation or by stepwise procedures. They incorporate 2,2′-bithiazole, 2,2′-biimidazole, 2.2′-bipyrimidine as well as 2,2′-bipyridine units. Treatment of the sodium complexes with europium(III) chloride gave the corresponding EuIII cryptates. The structural and spectral properties of these compounds are described. The EuIII complexes present characteristic 1H-NMR chemical-shift features. Their luminescence properties are described.  相似文献   

2.
The enthalpies and entropies of complexation of alkali and alkaline-earth metal cations by several macrobicyclic ligands have been obtained from calorimetric measurements and from the previously determined stability constants [2]. Both enthalpy and entropy changes play an important role in the stability and selectivity of the complexes. Particularly noteworthy are the large enthalpies and the negative entropies of complexation obtained for the alkali cation complexes (Na+, K+, Rb+ and Cs+ cryptates). The Sr2+ and Ba2+ as well as [Li+ ? 2.1.1]
  • 1 For use of the symbols see [2].
  • and [Na+ ? 2.2.1] cryptates are of the enthalpy dominant type with also a favourable entropy change. The Ca2+ and [Li+ ? 2.2.1] cryptates are entirely entropy stabilized with about zero heat of reaction. The high stability of the macrobicyclic complexes as compared to the macromonocylcic ones, the cryptate effect, is of enthalpic origin. The enthalpies of complexation display selectivity peaks, as do the stabilities, whereas the entropy changes do not. The high M2+/M+ selectivities found in terms of free energy, may be reversed when enthalpy is considered in view of the very different role played by the entropy term for M2+ and M+ cations. The enthalpies and entropies of ligation show that whereas the cryptate anions are similar in terms of entropy irrespective of which cation is included, the ligands, despite being more rigid than the hydration shell, are nevertheless able to adjust to some extent to the cation. This conclusion agrees with published X-rays data. The origin of the enthalpies and entropies of complexation is discussed in terms of structural features of the ligands and of solvation effects.  相似文献   

    3.
    Spherical Cryptates. Synthesis and Inclusion-Complexes of Spherical Macrotricyclic Ligands A general strategy for the synthesis of spherical macrotricyclic ligands has been developed. Four spherical cryptands, SC - 24 , SC - 25 , SC - 26 and SC - 27 have been obtained by this route. The synthesis and cation-complexing properties of these compounds are described in detail. Stability constants and cation exchange rates of the spherical cryptates obtained with alkali and alkaline-earth cations have been determined. Highly stable complexes are formed by SC - 24 ; the Rb+ and Cs+ cryptates of SC - 24 are the most stable complexes of these cations known to date. The size of the intramolecular cavity affects the complexation selectivity. The cation exchange rates are very slow, and the corresponding free energies of activation are even larger than, for macrobicyclic cryptates of similar stability. Both the high complex stabilities and the high activation energies required for cation exchange indicate a marked ‘spherical cryptate effect’ resulting from the highly connected nature of the molecular architecture of spherical macrotricyclic ligands.  相似文献   

    4.
    The electrochemical reduction of alkaline cryptates (222, M)+ has been studied on mercury electrode by normal pulse polarography, potentiostatic coulometry and cyclic voltammetry in propylene carbonate as solvent. The corresponding kinetic parameters have been calculated and compared with those obtained on solvated alkaline cations in the same medium. A more detailed study of the electrochemical reduction mechanism of the cryptate (222, K)+ shows that the primary product of the reduction is the unstable (222, Ko), and that the final stable products are the free ligand (222) and the amalgam Ko (Hg). The alkaline cations, when complexed by the same (222) ligand, exhibit close values of the polarographic diffusion coefficients. The specific polarographic behaviour of the cryptate (222, Cs)+ is described and its stability constant calculated in propylene carbonate. An analytical application of the electrochemical reduction of cryptates is also proposed.  相似文献   

    5.
    The NaBr cryptates of five macrobicyclic ligands containing bipyridine (bpy) and phenanthroline (phen) groups, i.e, of [bpy.bpy.bpy] 1 [bpy.bpy.phen] 2 [phen.phen.-phen] 3 [2.1.phen] 4 and [2.2.phen] 5 , have been prepared. 1, 2, 4 and 5 have been obtained in high yield by condensation of bis(bromomethyl)bipyridine 6 or -phenanthroline 9 with the corresponding macrocyclic diamines in presence of Na2CO3. Direct access to the NaBr complexes of th symmetrical cryptands 1 and 3 was achieved by a one-step macrobicyclisation procedure. The metal-ion complexes of ligands 1-5 have the attractive feature of combining the cation inclusion, nature of cryptates with the photoactivity of bipyridine and phenanthroline groups; they may thus be expected to posses a variety of interesting physical and chemical properties.  相似文献   

    6.
    Synthesis, characterization, microbiological activity and electrochemical properties of the Schiff-base ligands A1–A5 and their Cd(II) and Cu(II) metal complexes are reported. The ligands and their complexes have been characterized by elemental analysis, FT–IR, UV–Vis, 1H- and 13C-NMR, mass spectra, magnetic susceptibility and conductance measurements. In the complexes, all the ligands are bidentate, the oxygen in the ortho position and azomethine nitrogen atoms of the ligands coordinate to the metal ions. The keto-enol tautomeric forms of the Schiff-base ligands A1–A5 have been investigated in polar and non-polar organic solvents. Antimicrobial activity of the ligands and metal complexes were tested using the disc diffusion method and the chosen strains include Bacillus megaterium and Candida tropicalis. The electrochemical properties of the ligands A1–A5 and their Cu(II) metal complexes have been investigated at different scan rates (100–500?mV?s?1) in DMSO.  相似文献   

    7.
    The sodium and europium cryptates of the new macrobicyclic ligands 2 and 3 incorporating the 2,2′-bipyri dine 1,1′-dioxide and 3,3′-biisoquinoline 2,2′-dioxide units, respectively, have been prepared. The EuIII complexes present characteristic 1H-NMR spectra, showing large shifts, and are strongly luminescent in aqueous solution. These markedly improved luminescent properties, compared to the europium cryptate of the parent macrobicyclic ligand 1 , may be ascribed at least in part to a better shielding of the bound cation by the N-oxide sites.  相似文献   

    8.
    The distribution ratios of two isomeric 5, 7, 7, 12, 12, 14-hexamethyl-1, 4, 8, 11-tetraazacyclotetradecane, tet c and tet d, in several solvent systems at 25.0°C as functions of hydrogen ion concentration were determined. The protonation constants and the distribution constants of these macrocyclic ligands and their protonated species were obtained from the variations of the distribution ratios in the range of 6<–log [H+]<14.  相似文献   

    9.
    The complexation properties of the open-chain N2S2 ligands 1–4 are described and compared to those of analogous N2S2 macrocycles 5–7 . With Cu2+, the open-chain ligands give complexes with the stoichiometry CuL2+ and CuLOH+, the stabilities and absorption spectra of which have been determined. The ligand field exerted by these ligands is relatively constant and independent of the length of the chain. With Cu+, the species CuLH, CuLH2+, and CuL+ were identified and their stabilities measured. The redox potentials calculated from the equilibrium constants and measured by cyclic voltammetry agree and lie between 250 and 280 mV against SHE. The comparison between open-chain and cyclic ligands shows that (1) a macrocyclic effect is found for Cu2+ but not for Cu+, (2) the ligand-field strength is very different for the two types of ligands, and (3) the redox potentials span a larger interval for the macrocyclic than for the open-chain complexes.  相似文献   

    10.
    To increase the excellent light-emitting properties of the Eu3+ ion, macrobicyclic and macrotricyclic ligands 7 – 10 , incorporating a 18-membered tetralactam ring (acting as a lanthanide binding site) and a sensitizer group (2,2′-bipyridine or 2,2′-bipyridine 1,1′-dioxide moiety), were synthesized. The mononuclear and dinuclear europium cryptates derived from these ligands were isolated and characterized. Their luminescent properties and those of the corresponding cryptates containing a phenanthroline group (see 11 and 12 ) were examined in H2O and D2O solutions at 77 and 300 K. It results that the tetralactam moiety plays a major role in the efficient shielding of the complexed Eu3+ ion from the water environment. The cryptands incorporating the bipyridine unit are the most promising labels according to their photophysical properties (excitation maxima, emission decay lifetime, relative luminescent yield). In contrast with literature data, introduction of N-oxide groups in the bipyridine chromophore weakens the luminescence properties of the cryptate.  相似文献   

    11.
    The present article describes the synthesis and characterization of tetracoordinated boron (III) complexes with monobasic bidentate ligands (L 1 H, L 2 H, L 3 H, L 4 H, L 5 H, and L 6 H) having the general formulae PhB(L)(OH) and PhB(L) 2 . The 1:1 and 1:2 reactions of phenyl boronic acid with monobasic bidentate ligands resulted in the formation of colored solids. The complexes have been characterized by elemental analysis, molecular weight determinations, and IR and NMR ( 1 H, 13 C and 11 B) spectroscopy, as well as UV-vis spectral studies. Based on these studies, a tetrahedral geometry has been proposed for the resulting complexes. The ligands, along with their complexes, have been screened in vitro against a number of pathogenic fungal and bacterial strains. The studies indicate that the boron chelates are more potent than the parent ligands.  相似文献   

    12.
    Far-infrared spectra of sodium and lithium cryptates were observed in several nonaqueous solvents. The spectra are characterized by a broad band whose frequency is independent of the solvent or of the anion and which is assigned to the vibration of the cation in the cryptand cavity. The band frequencies were 234±2, 218±1, 243±3, and 348±1 cm?1 for Na+-C222, Na+-C221, Li+-C221, and Li+-C211 cryptates, respectively. These bands were found to be Raman-inactive, indicating that the cation-ligand interaction is very largely electrostatic in nature.  相似文献   

    13.
    Two types of technetium-99m complexes: (i) with the Hynic ligand linked to Substance P(1–11) and (ii) of the type ‘4 + 1’ consisting of tetradentate tripodal chelator tris(2-mercaptoethyl)-amine and monodentate isocyanide ligand previously coupled with Substance P(1–11), have been prepared on the n.c.a. scale. The obtained conjugates exhibit different lipophilicity and high stability in neutral aqueous solutions, even in the presence of excess concentration of histidine/cysteine competitive standard ligands. The conjugate (99mTc(NS3)(CN))2–SP containing two technetium-99m species in the molecule may be expected to be an extremely good diagnostic radiopharmaceutical.  相似文献   

    14.
    We have synthesized the three Schiff-base ligands H2L1–H2L3 and their CoII, FeIII and RuIII metal complexes. All compounds have been characterized by analytical and spectroscopic methods. Oxidation of cyclohexane has been done by the metal complexes in CH3CN using H2O2 and/or t-butylhydroperoxide (TBHP) as a co-catalyst. The keto-enol tautomeric forms of the ligands have been studied in polar and non-polar organic solvents. Electrochemical properties of the complexes have been studied at different scan rates. Thermal studies were carried out for the compounds. The ligands H2L1–H2L3 were mutagenic on Salmonella Typhimurium TA 98 strain in the presence and/or absence of S9 mix. While the ligands H2L1 and H2L2 showed mutagenic activity on the strain TA 100 with and without S9 mix, the ligand H2L3 was not mutagenic for TA 100. Antimicrobial activity studies of the compounds have also been carried out.  相似文献   

    15.
    A series of 12-, 14-, and 16-membered N2S2-macrocycles ( 9–11 and 19–21 ) with cis and trans-arrangement of the heteroatoms have been synthesized by high-dilution cyclization and subsequent reduction of the amides with B2H6. With these ligands the corresponding Cu2+-complexes were prepared and their UV/VIS spectra, their electrochemistry and their EPR properties have been studied. Generally three absorption bands at 270–320 nm, 330–370 nm and 530–620 nm can be observed in aqueous solution and these have been assigned to the N→Cu2+ and S→Cu2+ charge-transfer bands and to the d-d* transition, respectively. The cyclic voltammetry in CH3CN shows in all cases a reversible or quasi-reversible Cu2+/Cu+-transition at potentials of 10–480 mV against SHE. The values of g and A obtained from EPR spectra indicate that the geometry of the Cu2+-complex of the 14-membered cis-N2S2-macrocycle is less distorted than that of the other complexes.  相似文献   

    16.
    The electrochemical behaviour and cation recognition properties of two oxaferrocene cryptand ligands, 1,1′-[(1,4,10-trioxa-7,13-diazacyclopentadecane-7,13-diyl)diethoxy]-3,3′,4,4′-tetraphenylferrocene and 1,1′-[(1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-7,16-diyl)diethoxy]-3,3′,4,4′-tetraphenylferrocene, have been characterized in acetonitrile in the presence of Ba2+ and Na+ by cyclic voltammetry, square wave voltammetry and a rotating disc electrode. The changes in the redox signals for the cryptates at varying concentrations of the target cations are used as a direct measure of the electronic coupling between the two units, leading to the conclusion that the cryptate formation process proceeds in multiple stages and the ligand offers several binding sites in the complex.  相似文献   

    17.
    In this study, three new aminobiphenylglyoximes, [L1H2] N-(2-methoxy)aminobiphenylglyoxime, [L2H2] N-(3-methoxy)aminobiphenylglyoxime and L[3H2] N-(4-methoxy)aminobiphenylglyoxime have been synthesized by the reaction of (E,E)-4′-biphenylchloroglyoxime with 2-Methoxyaniline, 3-Methoxyaniline and 4-Methoxyaniline in absolute ethanol. The preparation NiII, CoII and CuII complexes of these ligands are described. The ligands and their complexes were characterized by elemental analyses, IR, mass, H1 and 13C NMR spectra, thermogravimetric analyses (t.g.a) and magnetic susceptibility measurements. Ligands complexing properties were studied by the liquid–liquid extraction of selected alkali (Li+, Na+, K+, Cs+) and transition metals (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Pb2+). It has been observed that all ligands show a high affinity to Cu2+ ions, whereas almost no affinity to alkali metals. The extraction equilibrium constants (K ex) for complexes of ligands with Cu2+ metal picrates between dichloromethane and water have been determined at 25°C.  相似文献   

    18.
    A family of linear Dy3 and Tb3 clusters have been facilely synthesized from the reactions of DyCl3, the polydentate 3‐methyloxysalicylaldoxime (MeOsaloxH2) ligand with auxiliary monoanionic ligands, such as trichloroacetate, NO3?, OH?, and Cl?. Complexes 1 – 5 contain a nearly linear Ln3 core, with similar Ln???Ln distances (3.6901(4)–3.7304(3) Å for the Dy3 species, and 3.7273(3)–3.7485(5) Å for the Tb3 species) and Ln???Ln???Ln angles of 157.036(8)–159.026(15)° for the Dy3 species and 157.156(8)–160.926(15)° for the Tb3 species. All three Ln centers are bridged by the two doubly‐deprotonated [MeOsalox]2? ligands and two of the four [MeOsaloxH]? ligands through the N,O‐η2‐oximato groups and the phenoxo oxygen atoms (Dy‐O‐Dy angles=102.28(16)–106.85(13)°; Tb‐O‐Tb angles=102.00(11)–106.62(11)°). The remaining two [MeOsaloxH]? ligands each chelate an outer LnIII center through their phenoxo oxygen and oxime nitrogen atoms. Magnetic studies reveal that both Dy3 and Tb3 clusters exhibit significant ferromagnetic interactions and that the Dy3 species behave as single‐molecule magnets, expanding upon the recent reports of the pure 4f type SMMs.  相似文献   

    19.
    This study reports the synthesis of sulfonamide-derived Schiff bases as ligands L 1 and L 2 as well as their transition metal complexes [VO(IV), Fe(II), Co(II), Ni(II), Cu(II), and Zn(II)]. The Schiff bases (4-{E-[(2-hydroxy-3-methoxyphenyl)methylidene]amino}benzene-1-sulfonamide ( L 1 ) and 4-{[(2-hydroxy-3-methoxyphenyl)methylidene]amino}-N-(5-methyl-1,2-oxazol-3-yl)benzene-1-sulfonamide ( L 2 ) were synthesized by the condensation reaction of 4-aminobenzene-1-sulfonamide and 4-amino-N-(3-methyl-2,3-dihydro-1,2-oxazol-5-yl)benzene-1-sulfonamide with 2-hydroxy-3-methoxybenzaldehyde in an equimolar ratio. Sulfonamide core ligands behaved as bidentate ligands and coordinated with transition metals via nitrogen of azomethine and the oxygen of the hydroxyl group. Ligand L 1 was recovered in its crystalline form and was analyzed by single-crystal X-ray diffraction technique which held monoclinic crystal system with space group (P21/c). The structures of the ligands L 1 and L 2 and their transition metal complexes were established by their physical (melting point, color, yields, solubility, magnetic susceptibility, and conductance measurements), spectral (UV–visible [UV–Vis], Fourier transform infrared spectroscopy, 1H NMR, 13C NMR, and mass analysis), and analytical (CHN analysis) techniques. Furthermore, computational analysis (vibrational bands, frontier molecular orbitals (FMOs), and natural bonding orbitals [NBOs]) were performed for ligands through density functional theory utilizing B3LYP/6-311+G(d,p) level and UV–Vis analysis was carried out by time-dependent density functional theory. Theoretical spectroscopic data were in line with the experimental spectroscopic data. NBO analysis confirmed the extraordinary stability of the ligands in their conjugative interactions. Global reactivity parameters computed from the FMO energies indicated the ligands were bioactive by nature. These procedures ensured the charge transfer phenomenon for the ligands and reasonable relevance was established with experimental results. The synthesized compounds were screened for antimicrobial activities against bacterial (Streptococcus aureus, Bacillus subtilis, Eshcheria coli, and Klebsiella pneomoniae) species and fungal (Aspergillus niger and Aspergillus flavous) strains. A further assay was designed for screening of their antioxidant activities (2,2-diphenyl-1-picrylhydrazine radical scavenging activity, total phenolic contents, and total iron reducing power) and enzyme inhibition properties (amylase, protease, acetylcholinesterase, and butyrylcholinesterase). The substantial results of these activities proved the ligands and their transition metal complexes to be bioactive in their nature.  相似文献   

    20.
    Three novel electron donor–acceptor conjugated polymers ( P1 – P3 ) bearing various imidazole pendants have been synthesized. Their excellent photophysical and electrochemical properties make them suitable transduction materials for chemosensing applications. Indeed, polymers P1 – P3 have been found to show remarkable sensing capabilities towards H+ and Fe2+ in semi‐aqueous solutions. Upon titration with H+, polymers P1 and P2 showed hypsochromic shifts of their absorptions and photoluminescence (PL) maxima with enhanced fluorescence intensities. However, P3 showed diminished absorption and fluorescence intensities under similar conditions due to static quenching. The anomalous behavior of P3 compared with P1 and P2 has been clarified in terms of electronic distributions through computational analysis. Furthermore, P3 (KSV=1.03×107) showed a superior sensing ability towards Fe2+ compared with P1 (KSV=2.01×106) and P2 (KSV=4.12×106) due to its improved molecular wire effect. Correspondingly, the fluorescence lifetime of P3 was greatly decreased (almost 11‐fold) compared to those of polymers P1 (4.6‐fold) and P2 (6.2‐fold) in the presence of Fe2+. By means of a fluorescence on‐off‐on approach, chemosensing reversibilities in protonation–deprotonation and metallation–demetallation have been achieved by employing triethylamine (TEA) and the disodium salt of ethylenediaminetetraacetic acid (Na2‐EDTA)/phenanthroline, respectively, as suitable counter ligands. 1H NMR titrations have revealed the unique behavior of P3 compared with P1 and P2 . To the best of our knowledge, there have been no previous reports of Fe2+ sensors based on single imidazole receptors conjugated to a main‐chain polymer showing such a diverse sensitivity pattern depending on their attached substituents.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号