首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The red complex trans-Mo2(O2CCH3)2(μ-dppa)2(BF4)2, 1 , was prepared by reaction of [Mo2(O2CCH3)2(CH3CN)6][BF4]2 with dppa (dppa = Ph2PN(H)PPh2) in THF. The reactions of Mo2(O2C(CH2)nCH3)4 with dppa and (CH3)3SiX (X = Cl or Br) afforded the complexes trans-Mo2X2(O2C(CH2)nCH3)2(μ-dppa)2 (X = Cl, n = 2, 2; X = Br, n = 2, 3; X = Cl, n = 10, 4 ; X = Cl, n = 12, 5 ). Their UV-vis, IR and 31P{1H}-NMR spectra have been recorded and the structures of 1, 2 and 3 have been determined. Crystal data for 1 : space group P21/n, a = 12.243(1) Å, b = 17.222(1) Å, c = 13.266(1) Å, β = 95.529(1)°, V = 2784.1(6) Å3, Z = 2, with final residuals R = 0.0509 and Rw = 0.0582. Crystal data for 24CH3Cl2: space group P21/n, a = 13.438(1) Å, b = 19.276(1) Å, c = 14.182(1) Å, β = 111.464(1)°, V = 3418.9(6) Å3, Z = 2, with final residuals R = 0.0492 and Rw = 0.0695. Crystal data for 3·4CH2Cl2: space group P21/n, a= 13.579(1) Å, b = 19.425(1) Å, c = 14.199(1) Å, β = 111.881(2)°, V = 3475.6(7) Å3, Z = 2, with final residuals R = 0.0703 and Rw = 0.0851. Comparison of the structural data shows that the effect of the axial ligand on weakening the Mo-Mo bond strength is X? > CH3CN > BF4?. The Tm values are 121.7 °C for 2 , 111.1 °C for 3 and 91.5 °C for 5 , respectively.  相似文献   

2.
Crystal Structures of the Fluorochloroplatinates(IV) cis-[(C5H5N)2CH2][PtF4Cl2], trans-[(C5H5N)2CH2][PtF4Cl2] · H2O, and [(C5H5N)2CH2][PtF5Cl] The complex ions cis-[PtF4Cl2]2?, trans-[PtF4Cl2]2? and [PtF5Cl]2? have been synthesized by stereoselective ligand exchange reactions utilizing the trans effect and are separated by ion exchange chromatography on diethylaminoethyl cellulose. These anions form stable AB-type salts with the doubly charged cation dipyridiniomethane, [(C5H5N)2CH2]2+. X-ray structure determinations on single crystals of cis-[(C5H5N)2CH2][PtF4Cl2] ( 1 ) (monoclinic, space group P21/n with a = 10.379(10), b = 9.635(2), c = 13.738(2) Å, β = 99.142(10)°, Z = 4), trans-[(C5H5N)2CH2][PtF4Cl2] · H2O ( 2 ) (triclinic, space group P1 with a = 7.757(4), b = 10.059(7), c = 10.408(6) Å, α = 82.49(5), β = 68.92(4), γ = 75.46(4)°, Z = 2) and [(C5H5N)2CH2][PtF5Cl] ( 3 ) (orthorhombic, space group Pnma with a = 10.394(3), b = 13.320(2), c = 9.2694(10) Å, Z = 4), reveal the perfect ordering of the anion sublattice. The stronger trans influence of Cl compared with F is observed in asymmetric axes $ {\rm F}^ \bullet $? Pt? Cl′. The bond lengths Pt? $ {\rm F}^ \bullet $ are 0.026 Å (1.4%) longer and the Pt? Cl′ distances are 0.078 Å (3,3%) shorter in comparison with those of symmetrically coordinated axes. The weakening of the Pt? $ {\rm F}^ \bullet $ bond and the strengthening of the Pt? Cl′ bond is better recognizable from shifts of the stretching vibrations by 8% to lower and by 13% to higher frequencies, respectively. Correspondingly, the valence force constants are found to be 15% lower and 22% higher. The trans influence is observed most distinctly in the 19F-nmr spectra exhibiting the coupling constant 1J($ {\rm F}^ \bullet $Pt) to be 29% smaller than 1J(FPt).  相似文献   

3.
Interaction of copper(II) chloride with 2, 4, 6‐triallyloxy‐1, 3, 5‐triazine leads to formation of copper(II) complex [CuCl2·2C3N3(OC3H5)3] ( I ). Electrochemical reduction of I produces the mixed‐valence CuI, II π, σ‐complex of [Cu7Cl8·2C3N3(OC3H5)3] ( II ). Final reduction produces [Cu8Cl8·2C3N3(OC3H5)3]·2C2H5OH copper(I) π‐complex ( III ). Low‐temperature X‐ray structure investigation of all three compounds has been performed: I : space group P1¯, a = 8.9565(6), b = 9.0114(6), c = 9.7291(7) Å, α = 64.873(7), β = 80.661(6), γ = 89.131(6)°, V = 700.2(2) Å3, Z = 1, R = 0.0302 for 2893 reflections. II : space group P1¯, a = 11.698(2), b = 11.162(1), c = 8.106(1) Å, α = 93.635(9), β = 84.24(1), γ = 89.395(8)°, V = 962.0(5) Å3, Z = 1, R = 0.0465 for 6111 reflections. III : space group P1¯, a = 8.7853(9), b = 10.3602(9), c = 12.851(1) Å, α = 99.351(8), β = 105.516(9), γ = 89.395(8), V = 1111.4(4) Å3, Z = 1, R = 0.0454 for 4470 reflections. Structure of I contains isolated [CuCl2·2C3N3(OC3H5)3] units. The isolated fragment of I fulfils in the structure of II bridging function connecting two hexagonal prismatic‐like cores Cu6Cl6, whereas isolated Cu6Cl6(CuCl)2 prismatic derivative appears in III . Coordination behaviour of the 2, 4, 6‐triallyloxy‐1, 3, 5‐triazine moiety is different in all the compounds. In I ligand moiety binds to the only copper(II) atom through the nitrogen atom of the triazine ring. In II ligand is coordinated to the CuII‐atom through the N atom and to two CuI ones through the two allylic groups. In III all allylic groups and nitrogen atom are coordinated by four metal centers. The presence of three allyl arms promotes an acting in II and III structures the bridging function of the ligand moiety. On the other hand, space separation of allyl groups enables a formation of large complicated inorganic clusters.  相似文献   

4.
The quadruply bonded complexes containing bridging acetate and polydentate phosphine ligands of the type Mo2(O2CCR3)XJ3-etp) (R = H, X = Br, 1; R = F, X = CI, 2; R = F, X = Br, 3; etp = Ph2PCH2CH2P(Ph)CH2CH2PPh2) were prepared by reactions of Mo2(O2CCR3)X2(PPh3)2 with etp in CH2X2. Their UV-vis and 31P{1H}-NMR spectra have been recorded, and the structure of 1 has been determined by X-ray crystallography. Crystal data for 1·2CH2Br2: space group P21/c, a = 13.924(7) Å, b = 21.157(4) Å, c = 14.427(5) Å, β = 101.82(3)°, V = 4159(2) Å3, Z = 4, with final residuals R = 0.0797 and Rw = 0.0793. The absorption wavelengths of the δ → δ* transitions and the chemical shifts and the coupling constants of the 31P{1H}-NMR spectra of these complexes are dependent on the natures of the halogen atoms and the acetate ligands.  相似文献   

5.
Three structures containing the N,N-4-toluenesulfonyl-2-pyridylaminato ligand are presented. The brown crystal of Cu2L4 (L =N,N-4-toluenesulfonyl-2-pyridylaminato) was found to crystallize in the monoclinic space group P2,/c with a = 15.762(12), b = 15.552(5), c = 20.505(11) Å, β = 104.14(7)°; V = 4874(5) Å3;Z = 4; the final RF = 0.050, RWF = 0.049 for 5142 observed reflections and 612 variables. The Cu-Cu distance is small, 2.516(2) Å and the complex is diamagnetic at room temperature. The colorless crystal of Ag2L was found to crystallize in the monoclinic space group P2t/n with a = 9.620(2), b = 5.625(2), c ? 23.250(3) Å, Å = 94.72(1)°; V = 1254.0(5) Å3; Z = 2; the final RF = 0.027; RWF = 0.028 for 1929 observed reflections and 164 variables. The Ag-Ag distance is 2.739(1) Å The green crystal of CuL2 (py)2was found to crystallize in the monoclinic space group P21 with a = 9.366(2), b = 20.615(7), c = 9.862(2) Å,β = 116.73(2)°; V = 1700.5(8) Å3; Z = 2; the final RF = 0.037; RWF = 0.038 for 1636 observed reflections and 423 variables. A reversible transformation between Cu2L4 and CuL2(py)2 is reported.  相似文献   

6.
From hydrothermal synthesis needle‐shaped crystals of [Ca3(C6H5O7)2(H2O)2] · 2H2O were obtained. The crystal structure was determined by single‐crystal X‐ray experiments and confirmed by powder data (P$\bar{1}$ (no. 2) a = 5.9466(4), b = 10.2247(8), c = 16.6496(13) Å, α = 72.213(7)°, β = 79.718(7)°, γ = 89.791(6)°, V = 947.06(13) Å3, Z = 2, R1 = 0.0426, wR2 = 0.1037). The structure was obtained from pseudo merohedrically polysynthetic twinned crystals using a combined data collection approach and refinement processes. The observed three‐dimensional network is dominated by eightfold coordinated Ca2+ cations linked by citrate anions and hydrogen bonds between two non‐coordinating crystal water molecules and two coordinating water molecules.  相似文献   

7.
Reactions of H2Os3(CO)10, 3, with the monophosphite-substituted and non-substituted tungsten propargyl and allenyl carbonyl complexes Cp(CO)2LWCH2C≡CH (1a, L = CO; 1b, L = P(OMe)3) and Cp(CO)2LWCH = C = CH2 (2a, L = CO; 2b, L = P(OMe)3) were investigated. In the reaction of 1b with 3, a tetranuclear complex 4b is obtained. The molecules of 4b crystallize as Cp(CO)2[P(OMe)3]W(μ, η1, η2-CH2CH=CH)(μ-H)Os3(CO)l0 in space group PI with a = 9.490 (4), b = 13.072 (7), c = 13.770 (9) Å, α = 91.89 (5), β = 106.71 (5), γ = 104.07(4)°, V = 1577(2) Å3, Z = 2. In the reaction of 2a with 3, from the reaction mixture exposed to air followed by workup using silica-gel packed column chromatography, a complex consisting of two triosmium clusters bridged by a hexadiene ligand from the coupling of allenyl ligand was obtained. The molecules of the hexanuclear complex crystallize as [CH2CH = CH)2(μH)2OS6(CO)20in space group P21/c with a = 14.448 (7), b = 13.689 (4), c = 19.224 (4) Å, β = 107.14(3)°, V = 3633 (2) Å Z = 4.  相似文献   

8.
The organically templated pentaborate [C10N2H9][B5O6(OH)4] · H3BO3 · H2O ( 1a ) was synthesized by boric acid and 4, 4′‐bipyridine in aqueous solution and characterized by single‐crystal X‐ray diffraction, elemental analysis, FTIR spectroscopy, thermogravimetric analysis, powder X‐ray diffraction, and photoluminescence spectroscopy. The compound crystallizes in the triclinic system with space group P$\bar{1}$ (a = 9.196(3) Å, b = 9.822(3) Å, c = 12.113(3) Å, α = 66.243(3)°, β = 76.998(3)°, γ = 75.067(3)°, V = 958.4(5) Å3, and Z = 2). The polyanions form a novel 3D supramolecular network with three kinds of channels by extensive hydrogen bonds. The title compound shows a UV photoluminescence with an emission maximum at 372 nm upon excitation at 248 nm, and the photoluminescence can be modified from UV to blue by means of a simple heat‐treatment process. The pentaborate could be a promising blue component for possible application in the white LED.  相似文献   

9.
The Ni complex [C6H5O2P(S)N(C3H72]2Ni is monoclinic, space group P21/n with a = 8.890(3), b = 21.692(5), c = 11.670(4) Å, β = 108.35(5)°, V = 2136(1) Å3, F(000) = 916, Mr = 534.01, Z = 2, Dm = 1.318, Dx = 1.358 Mg m?3, graphite monochromatized MoKα ? radiation, π = 0.7107 Å, μ = 0.76 mm?1, T = 293 K. The structure was solved by a heavy atom method and refined to R = 0.044 for 3095 independent reflexions. The Ni atom lies in the centre of symmetry and is coordinated by four S atoms of the two molecules of the ligand in a planar arrangement. Ni? S bond lengths are 2.205 and 2.226 Å resp., the angles S? Ni? S are 97.65 and 82.35° resp.  相似文献   

10.
Two CoII complexes, Co(phen)(HL)2 ( 1 ) and [Co2(phen)2(H2O)4L2]·H2O ( 2 ) (H2L = HOOC‐(CH2)5‐COOH), were synthesized and structurally characterized on the basis of single crystal X‐ray diffraction data. In complex 1 the Co atoms are tetrahedrally coordinated by two N atoms of one phen ligand and two O atoms of different hydrogenpimelato ligands. Through π—π stacking interactions between carboxyl group and phen ligand, the complex molecules are assembled into 1D columnar chains, which are connected by intermolecular hydrogen bonds. Complex 2 consists of the centrosymmetric dinuclear [Co2(phen)2(H2O)4L2] molecules and hydrogen bonded H2O molecules. The Co atoms are each octahedrally surrounded by two N atoms of one phen ligand and four O atoms from two bis‐monodentate pimelato ligands and two H2O molecules at the trans positions. The results about thermal analyses, which were performed in flowing N2 atmosphere, on both complexes were discussed. Crystal data: ( 1 ) C2/c (no. 15), a = 13.491(1)Å, b = 9.828(1)Å, c = 19.392(2)Å, β = 100.648(1)°, U = 2526.9(4)Å3, Z = 4; ( 2 ) P1 (no. 2), a = 11.558(1)Å, b = 11.947(3)Å, c = 15.211(1)Å, α = 86.17(1)°, β = 75.55(1)°, γ = 69.95(1)°, U = 1910.3(3)Å3, Z = 2.  相似文献   

11.
Trans-MoCl3Py3 (Py 7mdash; pyridine) crystallizes in the monoclinic space group P21/c with four molecules in the unit cell. The cell dimensions are: a = 9.229(3), b = 12.555(3), c = 17.920(4) Å and β = 119.33(2)°. Calculated density for Z = 4 is 1.61 gcm?3 and measured 1.61 ± 0.02 gcm?3. Structure has been solved from 1594 independent film data and refined to the conventional R factor 9.1%. Three chlorine atoms and three nitrogen atoms of the pyridine molecules form an octahedral coordination about molybdenum in the 1, 2,6 or trans configuration. Distances within octahedron are: Mo? Cl 2.437(5), 2.424(5), 2.423(5) Å, and Mo? N(pyridine) 2.189(13), 2.163(15), 2.223(15) Å. CrCl3Py3, CrBr3Py3 and MoBr3Py3 crystallize in the same space group with comparable cell dimensions and are probably isostructural with trans-MoCl3Py3.  相似文献   

12.
New Fluoropalladates(II) Single crystal investigations on \documentclass{article}\pagestyle{empty}\begin{document}$ \begin{array}{*{20}c} {[6][4]} \\ {{\rm CsPdPdF}_{\rm 5} } \\ \end{array} $\end{document} (orange brown) demonstrate the close structural relationship to the CsAgFeF6 – and CsNiNiF6-type, respectively. One half of the Pd2+ ions is surrounded octahedrally, whereas the other half, because of the “absence” of one F?, is coordinated planar quadratically. CsPd2F5 crystallizes orthorhombic (Imma – D, No. 74; Z = 4) with a = 6.533, b = 7.862, c = 10.79 Å (four circle diffractometer data). From Guinier data are isotypic CsMgPdF5 (yellow, a = 6.603(2), b = 7.415(2), c = 10.548(3) Å), CsZnPdF5 (beige, a = 6.576(1), b = 7,483(2), c = 10.645(2) Å), CsNiPdF5 (yellow, a = 6.499(1), b = 7.504(2), c = 10.575(3) Å) and CsCoPdF5 (brown, a = 6.527(1), b = 7.553(1), c = 10.659(2) Å). Besides of CsPd2F5 there exist compounds of the composition Me3PdF5 on the alkali-rich side of the system MeF/PdF2. Single crystal investigations for Rb3PdF3 (yellow, P4/mbm–D, No. 127; Z = 2) led to a = 7.467, c = 6.497 Å (four circle diffractometer data). Isotypic are (single crystal data) Cs3PdF5 (yellow, a = 7.848, c = 6.688 Å) and Rb2CsPdF5 (yellow, ordered distribution of the alkali ions, a = 7.575, c = 6.445 Å).  相似文献   

13.
Two uranyl sulfate hydrates, (H3O)2[(UO2)2(SO4)3(H2O)] · 7H2O (NDUS) and (H3O)2[(UO2)2(SO4)3(H2O)] · 4H2O (NDUS1), and one uranyl selenate‐selenite [C5H6N][(UO2)(SeO4)(HSeO3)] (NDUSe), were obtained and their crystal structures solved. NDUS and NDUSe result from reactions in highly acidic media in the presence of L ‐cystine at 373 K. NDUS crystallized in a closed vial at 278 K after 5 days and NDUSe in an open beaker at 278 K after 2 weeks. NDUS1 was synthesized from aqueous solution at room temperature over the course of a month. NDUS, NDUS1, and NDUSe crystallize in the monoclinic space group P21/n, a = 15.0249(4) Å,b = 9.9320(2) Å, c = 15.6518(4) Å, β = 112.778(1)°, V = 2153.52(9) Å3,Z = 4, the tetragonal space group P43212, a = 10.6111(2) Å,c = 31.644(1) Å, V = 3563.0(2) Å3, Z = 8, and in the monoclinic space group P21/n, a = 8.993(3) Å, b = 13.399(5) Å, c = 10.640(4) Å,β = 108.230(4)°, V = 1217.7(8) Å3, Z = 4, respectively.The structural units of NDUS and NDUS1 are two‐dimensional uranyl sulfate sheets with a U/S ratio of 2/3. The structural unit of NDUSe is a two‐dimensional uranyl selenate‐selenite sheets with a U/Se ratio of 1/2. In‐situ reaction of the L ‐cystine ligands gives two distinct products for the different acids used here. Where sulfuric acid is used, only H3O+ cations are located in the interlayer space, where they balance the charge of the sheets, whereas where selenic acid is used, interlayer C5H6N+ cations result from the cyclization of the carboxyl groups of L ‐cystine, balancing the charge of the sheets.  相似文献   

14.
A centrosymmetric mononuclear copper(II) complex, [Cu(L1)2] (I), and a phenolate oxygen-bridged dinuclear copper(II) complex, [Cu2(L2)4] (II) (HL1 = 4-chloro-2-[(2-morpholin-4-ylethylimino)methyl]phenol, HL2 = 4-chloro-2-(cyclohexylimino-methyl)phenol), were synthesized and characterized by elemental analyses, IR, and single crystal X-ray diffraction. The crystal of I is monoclinic: space group {ITP}21/n, a = 13.396(3), b = 5.339(1), c = 19.740(4) Å, β = 108.64(3), V = 1337.8(5) Å3, {ITZ} = 2. The crystal of II is monoclinic: space group P21, a = 9.157(2), b = 22.715(4), c = 12.169(2) Å, = 95.28(3), {ITV} = 2520.4(8) Å3, {ITZ}= 2. The Cu atom in I, lying on the inversion center, is four-coordinate in a square planar geometry with two phenolate oxygen and two imine nitrogen atoms. Each Cu atom in II is five-coordinate in a square pyramidal geometry with two phenolate oxygen and two imine nitrogen atoms from two L2 ligands defining the basal plane and with one phenolate oxygen atom of another L2 ligand occupying the apical position.  相似文献   

15.
The reaction of (S)-(-)-1, l-diphenyl-propane-1,2-diol with AlCl3 in diethyl ether furnishes the product [Al((S)-(-)-μ2-OC(H)(Me)C(Ph)2OH)Cl2]2 1, which decomposes slowly above 25 °C. Complex 1·2Et2O Crystallizes in the non-centrosymmetric monoclinic space group P21 with a=10.591(1) Å, b=16.718(1) Å, c = 12.156(2) Å, β=99.30(2)°, V = 2124.1(3) Å3, z = 4, R = 4.67%, Rw=4.84%, GoF=1.14. The structure of 1 shows a dimer feature, which is hydrogen bonded to two diethyl ether molecules. In the reaction of 2-phenoxyethanol with AlMe3, the dimeric [(μ-O(CH2)2OPh)AlMe2]2 is obtained in high yield. 2 crystallizes in the monoclinic space group P21/c with a = 7.398(2) Å, b = 7.376(2) Å, c = 20.710(2) Å, β = 90.56(2)°, v = 1129.9(4) Å3, z=4, R=5.70%, Rw=7.15%, GoF=1.59.  相似文献   

16.
The metal thiophosphates Rb2AgPS4 ( 2 ), RbAg5(PS4)2 ( 3 ), and Rb3Ag9(PS4)4 ( 4 ) were synthesized by stoichiometric reactions, whereas Rb6(PS5)(P2S10) ( 1 ) was prepared with excess amount of sulfur. The compounds crystallize as follows: 1 monoclinic, P21/c (no. 14), a = 17.0123(7) Å, b = 6.9102(2) Å, c = 23.179(1) Å, β = 94.399(4)°; 2 triclinic, P$\bar{1}$ (no. 2), a = 6.600(1) Å, b = 6.856(1) Å, c = 10.943(3) Å, α = 95.150(2)°, β = 107.338(2)°, γ = 111.383(2)°; 3 orthorhombic, Pbca (no. 61), a = 12.607(1) Å, b = 12.612(1) Å, c = 17.759(2) Å; 4 orthorhombic, Pbcm (no. 57), a = 6.3481(2) Å, b = 12.5782(4) Å, c = 35.975(1) Å. The crystal structures contain discrete units, chains, and 3D polyanionic frameworks composed of PS4 tetrahedral units arranged and connected in different manner. Compounds 1 – 3 melt congruently, whereas incongruent melting behavior was observed for compound 4 . 1 – 4 are semiconductors with bandgaps between 2.3 and 2.6 eV and thermally stable up to 450 °C in an inert atmosphere.  相似文献   

17.
X‐ray crystal structures are reported for Na6[RuO2{TeO4(OH)2}2]·16H2O and Na5[Ag{TeO4(OH)2}2]·16H2O which contain respectively RuVI and AgIII coordinated to chelating bidentate tellurate ([TeO4(OH)2]4−) groups. Na6[RuO2{TeO4(OH)2}2]·16H2O: Space group P1¯, Z = 2, lattice dimensions at 120 K; a = 6.9865(1), b = 8.7196(2), c = 11.7395(2)Å, α = 74.008(1), β = 79.954(1), γ = 88.514(1)°; R1 = 0.025. Na5[Ag{TeO4(OH)2}2]·16H2O: Space group P1¯, Z = 2, lattice dimensions at 120 K; a = 5.888(1), b = 8.932(1), c = 12.561(2)Å, α = 98.219(6), β = 97.964(9), γ = 93.238(14)°; R1 = 0.047.  相似文献   

18.
An X-ray diffraction study of the single crystals of (C2H7N4O)2[(UO2)2(OH)2(C2O4)(CHO2)2] was carried out. The compound crystallizes in the triclinic system, space group $P\bar 1$ , Z = 2, a = 5.5621(8) Å, b = 8.1489(10) Å, c = 11.8757(16) Å, α = 88.866(7)°, β = 82.204(6)°, γ = 87.378(6)°, V = 532.7(1) Å3, ρcalcd = 2.988 g/cm3. The main structural units in the crystal are the [(UO2)2(OH)2(C2O4)(CHO2)2)]2? chains corresponding to the crystal chemical group A2M 2 2 K02M 2 1 (A = UO 2 2+ , M2 = OH?, K02 = C2O 4 2? , M1 = CHO 2 ? ) of uranyl complexes. The chains are united into a three-dimensional framework through the electrostatic interaction and hydrogen bonds involving uranyl, oxalate, and hydroxyl groups, formate ions, and 1-carbamoylguanidinium cations.  相似文献   

19.
The η2‐thio‐indium complexes [In(η2‐thio)3] (thio = S2CNC5H10, 2 ; SNC4H4, (pyridine‐2‐thionate, pyS, 3 ) and [In(η2‐pyS)22‐acac)], 4 , (acac: acetylacetonate) are prepared by reacting the tris(η2‐acac)indium complex [In(η2‐acac)3], 1 with HS2CNC5H10, pySH, and pySH with ratios of 1:3, 1:3, and 1:2 in dichloromethane at room temperature, respectively. All of these complexes are identified by spectroscopic methods and complexes 2 and 3 are determined by single‐crystal X‐ray diffraction. Crystal data for 2 : space group, C2/c with a = 13.5489(8) Å, b = 12.1821(7) Å, c = 16.0893(10) Å, β = 101.654(1)°, V = 2600.9(3) Å3, and Z = 4. The structure was refined to R = 0.033 and Rw = 0.086; Crystal data for 3 : space group, P21 with a = 8.8064 (6) Å, b = 11.7047 (8) Å, c = 9.4046 (7) Å, β = 114.78 (1)°, V = 880.13(11) Å3, and Z = 2. The structure was refined to R = 0.030 and Rw = 0.061. The geometry around the metal atom of the two complexes is a trigonal prismatic coordination. The piperidinyldithiocarbamate and pyridine‐2‐thionate ligands, respectively, coordinate to the indium metal center through the two sulfur atoms and one sulfur and one nitrogen atoms, respectively. The short C‐N bond length in the range of 1.322(4)–1.381(6) Å in 2 and C‐S bond length in the range of 1.715(2)–1.753(6) Å in 2 and 3 , respectively, indicate considerable partial double bond character.  相似文献   

20.
The single crystals of (C2H7N4O)2[UO2(C2O4)2(H2O)] were studied by X-ray diffraction. The crystals are monoclinic, space group Pn, Z = 2, unit cell parameters: a = 9.4123(2) Å, b = 8.4591(2) Å, c = 11.8740(3) Å, β = 105.500(10)°, V = 911.02(4) Å3. The main structural units of the crystals of I are islet complex groups [UO2(C2O4)2(H2O)]2? corresponding to the crystal chemical group AB 2 01 M1 (A = UO UO 2 2+ , B01 = C2O 4 2? , M = H2O) of uranyl complexes. Uranium-containing mononuclear complexes are connected into a three-dimensional framework through the electrostatic interactions and hydrogen bonding system involving carbamyolguanidinium ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号