首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of magnetic and transport properties were performed on needle-shaped single crystals of Ce12Fe57.5As41 and La12Fe57.5As41. The availability of a complete set of data enabled a side-by-side comparison between these two rare earth compounds. Both compounds exhibited multiple magnetic orders within 2–300 K and metamagnetic transitions at various fields. Ferromagnetic transitions with Curie temperatures of 100 and 125 K were found for Ce12Fe57.5As41 and La12Fe57.5As41, respectively, followed by antiferromagnetic type spin reorientations near Curie temperatures. The magnetic properties underwent complex evolution in the magnetic field for both compounds. An antiferromagnetic phase transition at about 60 K and 0.2 T was observed merely for Ce12Fe57.5As41. The field-induced magnetic phase transition occurred from antiferromagnetic to ferromagnetic structure. A strong magnetocrystalline anisotropy was evident from magnetization measurements of Ce12Fe57.5As41. A temperature-field phase diagram was present for these two rare earth systems. In addition, a logarithmic temperature dependence of electrical resistivity was observed in the two compounds within a large temperature range of 150–300 K, which is rarely found in 3D-based compounds. It may be related to Kondo scattering described by independent localized Fe 3d moments interacting with conduction electrons.  相似文献   

2.
The superconducting order parameters in optimally doped Ba0.65K0.35Fe2As2 single crystals have been directly measured using multiple Andreev reflection effect spectroscopy of superconductor–normal metal–superconductor break-junctions. We determine two superconducting gaps, which are nodeless in the k x k y -plane of the momentum space, and resolve a substantial in-plane anisotropy of the large gap. The temperature dependences of the gaps indicate a strong coupling within the bands where ΔL develops, a weak coupling in the condensate with the small gap ΔS, and a moderate interband interaction between the two condensates. The own critical temperatures of both condensates have been estimated (under the hypotherical assumption of zero interband interaction).  相似文献   

3.
Anisotropy in the magnetic properties of YbNiAl2 intermetallide has been studied. Electron paramagnetic resonance (EPR) signals assigned to the localized magnetic moments of trivalent ytterbium have been detected at temperatures below 20 K. Spin–lattice relaxation processes like the Orbach–Aminov process with participation of the first excited Stark sublevel of the Yb3+ ion with an energy of 96 K govern electron–spin dynamics and the disappearance of spectrum lines with a further increase in temperature. Strong magnetic anisotropy effects are discussed as a main reason for the appearance of electron paramagnetic resonance.  相似文献   

4.
We report on the synthesis and measurements of the temperature dependences of the resistivity ρ, the penetration depth λ, and the upper critical magnetic field Hc2, for polycrystalline samples of dodecaboride ZrB12 and diboride MgB2. We conclude that ZrB12 behaves as a simple metal in the normal state with the usual Bloch-Grüneisen temperature dependence of ρ(T) and with a rather low resistive Debye temperature TR = 280 K (to be compared to TR = 900 K for MgB2). The ρ(T) and λ(T) dependences for these samples reveal a superconducting transition in ZrB12 at Tc = 6.0 K. Although a clear exponential λ(T) dependence in MgB2 thin films and ceramic pellets was observed at low temperatures, this dependence was almost linear for ZrB12 below Tc/2. These features indicate an s-wave pairing state in MgB2, whereas a d-wave pairing state is possible in ZrB12. In disagreement with conventional theories, we found a linear temperature dependence, of Hc2(T) for ZrB12 (Hc2(0) = 0.15 T).  相似文献   

5.
Magnetic flux structure on the surface of EuFe2(As1-x P x )2 single crystals with nearly optimal phosphorus doping levels x = 0.20 and x = 0.21 is studied by low-temperature magnetic force microscopy and decoration with ferromagnetic nanoparticles. The studies are performed in a broad temperature range. It is shown that the single crystal with x = 0.21 in the temperature range between the critical temperatures T SC= 22 K and T C = (18 ± 0.3) K of the superconducting and ferromagnetic phase transitions, respectively, has the vortex structure of a frozen magnetic flux, typical for type-II superconductors. The magnetic domain structure is observed in the superconducting state below T C. The nature of this structure is discussed.  相似文献   

6.
We report measurements of the temperature dependence of the electrical resistivity, ρ(T), and magnetic pen-etration depth, λ(T), for polycrystalline samples of Eu0.5K0.5Fe2As2 with T c = 31 K. ρ(T) follows a linear temperature dependence above T c and bends over to a weaker temperature dependence around 150 K. The magnetic penetration depth, determined by radio frequency technique displays an unusual minimum around 4 K which is associated with short-range ordering of localized Eu3+ moments. The article is published in the original.  相似文献   

7.
Single crystals of Pb2Fe2Ge2O9 have been grown. They were subjected to X-ray diffraction, magnetic, neutron diffraction, Mössbauer and spin resonance studies. It has been established that Pb2Fe2Ge2O9 is a weak ferromagnet with a Néel temperature T N = 46 K, and the exchange and spin-flop transition fields have been estimated. It has been demonstrated that the weak ferromagnetic moment is actually the result of the single-ion anisotropy axes for the magnetic moments of different magnetic sublattices being not collinear.  相似文献   

8.
The magnetic susceptibility and specific heat of single crystals of the Ba2Fe2GeO7 barium ferrigermanate are investigated. It is revealed that the temperature dependence of the magnetic susceptibility exhibits a kink at a temperature T = 8.5 K. The number of nonequivalent positions of Fe3+ ions and their occupancies are determined using Mössbauer spectroscopy. It is shown that the Fe3+ ions located in tetrahedral positions T2 are ordered incompletely, which is inconsistent with the results obtained previously. An assumption is made regarding the possible ground magnetic state of the Ba2Fe2GeO7 compound.  相似文献   

9.
The relaxation electronic phenomena occurring in TlGa0.99Fe0.01Se2 single crystals in an external dc electric field are investigated. It is established that these phenomena are caused by electric charges accumulated in the single crystals. The charge relaxation at different electric field strengths and temperatures, the hysteresis of the current-voltage characteristic, and the electric charge accumulated in the TlGa0.99Fe0.01Se2 single crystals are consistent with the relay-race mechanism of transfer of a charge generated at deep-lying energy levels in the band gap due to the injection of charge carriers from the electric contact into the crystal. The parameters characterizing the electronic phenomena observed in the TlGa0.99Fe0.01Se2 single crystals are determined to be as follows: the effective mobility of charge carriers transferred by deep-lying centers μf=5.6×10?2 cm2/(V s) at 300 K and the activation energy of charge transfer ΔE=0.54 eV, the contact capacitance of the sample C c =5×10?8 F, the localization length of charge carriers in the crystal d c =1.17×10?6 cm, the electric charge time constant of the contact τ=15 s, the time a charge carrier takes to travel through the sample t t =1.8×10?3 s, and the activation energy of traps responsible for charge relaxation ΔE σ = ΔE Q = 0.58 eV.  相似文献   

10.
Electrical transport and structural characterizations of isoelectronically substituted Ba(Fe0.9Ru0.1)2As2 have been performed as a function of pressure up to ~ 30 GPa and temperature down to ~ 10 K using designer diamond anvil cell. Similar to undoped members of the AFe2As2 (A = Ca, Sr, Ba) family, Ba(Fe0.9Ru0.1)2As2 shows anomalous a-lattice parameter expansion with increasing pressure and a concurrent ThCr2Si2 type isostructural (I4/mmm) phase transition from tetragonal (T) phase to a collapsed tetragonal (cT) phase occurring between 12 and 17 GPa where the a is maximum. Above 17 GPa, the material remains in the cT phase up to 30 GPa at 200 K. The resistance measurements show evidence of pressure-induced zero resistance that may be indicative of high-temperature superconductivity for pressures above 3.9 GPa. The onset of the resistive transition temperature decreases gradually with increasing pressure before completely disappearing for pressures above ~ 10.6 GPa near the T-cT transition. We have determined the crystal structure of the high-T c phase of Ru-doped BaFe2As2 to remain as tetragonal (I4/mmm) by analyzing the X-ray diffraction pattern obtained at 10 K and 9.7 ± 0.7 GPa, as opposed to inferring the structural transition from electrical resistance measurement, as in a previous report [S.K. Kim, M.S. Torikachvili, E. Colombier, A. Thaler, S.L. Bud’ko, P.C. Canfield, Phys. Rev. B 84, 134525 (2011)].  相似文献   

11.
This paper reports on the results of the ab initio FLAPW-GGA band structure calculations for two new layered phases SrRu2As2 and BaRu2As2, which are isostructural and isoelectronic to the known tetragonal (Ca,Sr,Ba)Fe2As2 basis phases of the FeAs superconductor family. The energy bands, densities of states, topology of the Fermi surface, low-temperature electron specific heats, and molar Pauli paramagnetic susceptibilities of SrRu2As2 and BaRu2As2 are determined for the first time and discussed in comparison with those for BaFe2As2 and BaRh2As2.  相似文献   

12.
The electrical resistivity of TlInTe2 chain-structure semiconductors in directions parallel and perpendicular to the chains is analyzed as a function of temperature. It is demonstrated that, in both cases, the temperature dependences of the electrical resistivity in the temperature range under investigation are characterized by two portions associated with different mechanisms of electrical conduction. In the high-temperature range, the electrical conduction is predominantly provided by thermally excited impurity charge carriers in the allowed band. In the low-temperature range, the conduction occurs through charge carrier hopping between localized states lying in a narrow energy band near the Fermi level. The activation energy for impurity conduction is determined. The localization lengths and the density of localized states near the Fermi level, the spread in energies of these states, and the average carrier-hopping distances are estimated for different temperatures.  相似文献   

13.
Tensometric study of n-type Bi2Se3 single crystals in dc magnetic fields to 6 T in a temperature range of 7–23 K detected a weak negative thermal expansion (NTE) in the basal plane. The NTE increases with the field strength and depends on its orientation with respect to the trigonal c axis. In a magnetic field of 6 T, parallel to the c axis, the linear NTE coefficient reaches ?7 · 10?7 K?1, and a minimum sample length is reached at a temperature of 13 K, where a Hall carrier concentration maximum is also detected. The found magnetoelastic anomaly can be associated with the topological insulator state.  相似文献   

14.
Superconductivity was achieved in Ti-doped iron-arsenide compound Sr4Cr0.8Ti1.2O6Fe2As2 (abbreviated as Cr-FeAs-42622). The X-ray diffraction measurement shows that this material has a layered structure with the space group of P4/nmm, and with the lattice constants a = b = 3.9003 Å and c = 15.8376 Å. Clear diamagnetic signals in ac susceptibility data and zero-resistance in resistivity data were detected at about 6 K, confirming the occurrence of bulk superconductivity. Meanwhile we observed a superconducting transition in the resistive data with the onset transition temperature at 29.2 K, which may be induced by the nonuniform distribution of the Cr/Ti content in the FeAs-42622 phase.  相似文献   

15.
The results of infrared reflectivity measurements for the iron-based high-temperature superconductor Ba(Fe0.9Co0.1)2As2 are reported. The reflectivity is found to be close to unity at frequencies ω lower than 2Δ/h (2Δ is the superconducting gap and h is Planck’s constant). This is evidence for the s +/− or s +/+ symmetry of the superconducting order parameter in the studied compound. The infrared reflectivity spectra of Ba(Fe0.9Co0.1)2As2 manifest opening of several superconducting gaps at temperatures lower than critical T c .  相似文献   

16.
The electronic structure and magnetic properties of Fe2SiC compound have been studiedusing the framework of an all-electron full-potential linearized augmented-plane wave(FP-LAPW) method within the local density (LSDA) and + U corrected(LSDA + U)approximations. An antiferromagnetic spin ordering of Fe atoms is shown to be the groundstate for this compound. From the electronic band structures and density of states (DOS),Fe2SiC has ametallic character and from the analysis of the site and momentum projected densities, itis deduced that the bonding is achieved through hybridization of Fe-3d with C-2p states andFe-3d withSi-3pstates. It is also pointed out that the Fe-C bonding is more covalent than Fe-Si. In theFM phase, the spin polarized calculations indicate that the total magnetic moment ofFe2SiC increasesfrom 0.41 to 4.33μ B when the Hubbard U parameter for iron isconsidered.  相似文献   

17.
The influence of uniaxial pressure applied along the principal crystallophysical directions on the dispersion and temperature dependences of the refractive indices n i of K2ZnCl4 crystals has been investigated. The n i values are found to be fairly sensitive to uniaxial pressure, whereas an uniaxial stress does not change the behavior of the dispersion and temperature dependences of n i . The baric changes in n i have been studied. The electronic polarizability α i , refractions R, and parameters of UV oscillators (λ0i , B 1i ) of mechanically deformed K2ZnCl4 crystals have been calculated. The contributions of UV and IR oscillators to n i (λ) have been estimated for different temperatures, spectral regions, and stresses. A significant baric shift of the points of the paraelectric phase-incommensurate phase-commensurate phase transitions to different temperature ranges, depending on the direction of pressure application, is found; this shift is due to the effect of uniaxial stress on the K2ZnCl4 crystal structure.  相似文献   

18.
A. G. Lebed 《JETP Letters》2012,94(9):689-692
We theoretically determine the Ginzburg-Landau slopes of the anisotropic upper critical magnetic field in a quasi-one-dimensional superconductor and correct the previous works on this issue. By using the experimentally measured values of the Ginzburg-Landau slopes in the superconductor (TMTSF)ClO4, we determine band parameters of its electron spectrum. Our main result is that the so-called quantum dimensional crossover has to happen in this material in magnetic fields, H = 3–8 T, which are much lower than the previously assumed. We discuss how this fact influences metallic and superconducting properties of the (TMTSF)2ClO4.  相似文献   

19.
The effect of a uniaxial mechanical compression (σm ≤ 100 bar) on the spectral dependences (300–800 nm) of the birefringence Δn i and refractive indices n i of K2SO4 crystals is studied. The electronic polarizabilities, refractions, and parameters (λ0i , B 1i ) of ultraviolet oscillators of mechanically compressed crystals are calculated. It is shown that the dispersions of Δn i(λ) and n i(λ) are normal and sharply increase near the absorption edge. It is found that the uniaxial compression changes the value of the dispersions dΔn i/dλ and dn i/dλ rather than their character. It is ascertained that the simultaneous action of the compressions σx and σz, as well as of σy and σz, leads to the appearance of new isotropic states in the K2SO4 crystal, which manifests itself in the equality of corresponding birefringences. It is shown that the baric dependences n i(σ) are determined by the change in the density of oscillators (~30%), by the shift of the absorption edge and effective band maximum and by the change in the oscillator strength (~70%).  相似文献   

20.
First principle FLAPW-GGA calculations have been performed with the purpose to understand the effect of Ti-doping on the electronic properties for the newly discovered tetragonal iron arsenide-oxide Sr4Sc2Fe2As2O6 (abbreviated as FeAs42226) as the possible parent phase for the new FeAs superconductors. Our results show that the insertion of Ti into Sc sublattice of this five-component iron arsenide-oxide phase leads to the resolute change of electronic structure of FeAs42226. Namely, the insulating oxygen-containing [Sr4Sc2O6] blocks in Ti-doped FeAs42226 became conducting, and this differs essentially from the known picture for all others FeAs superconductors where the conducting [Fe2As2] blocks are alternated with insulating blocks. Moreover in sharp contrast with FeAs-based superconductors with Fe 3d bands near the Fermi level, for Ti-doped FeAs42226 in this region the Ti 3d states are dominated, whereas the Fe 3d states are suppressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号