首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A study of the reversible CO2 fixation by a series of macrocyclic dicopper complexes is described. The dicopper macrocyclic complexes [Cu2(OH)2(Me2p)](CF3SO3)2, 1(CF3SO3)2, and [Cu2(mu-OH)2(Me2m)](CF3SO3)2, 2(CF3SO3)2, (Scheme 1) containing terminally bound and bridging hydroxide ligands, respectively, promote reversible inter- and intramolecular CO2 fixation that results in the formation of the carbonate complexes [{Cu2(Me2p)}2(mu-CO3)2](CF3SO3)4, 4(CF3SO3)4, and [Cu2(mu-CO3)(Me2m)](CF3SO3)2, 5(CF3SO3)2. Under a N2 atmosphere the complexes evolve CO2 and revert to the starting hydroxo complexes 1(CF3SO3)2 and 2(CF3SO3)2, a reaction the rate of which linearly depends on [H2O]. In the presence of water, attempts to crystallize 5(CF3SO3)2 afford [{Cu2(Me2m)(H2O)}2(mu-CO3)2](CF3SO3)4, 6(CF3SO3)4, which appears to rapidly convert to 5(CF3SO3)2 in acetonitrile solution. [Cu2(OH)2(H3m)]2+, 7, which contains a larger macrocyclic ligand, irreversibly reacts with atmospheric CO2 to generate cagelike [{Cu2(H3m)}2(mu-CO3)2](ClO4)4, 8(ClO4)4. However, addition of 1 equiv of HClO4 per Cu generates [Cu2(H3m)(CH3CN)4]4+ (3), and subsequent addition of Et3N under air reassembles 8. The carbonate complexes 4(CF3SO3)4, 5(CF3SO3)2, 6(CF3SO3)4, and 8(ClO4)4 have been characterized in the solid state by X-ray crystallography. This analysis reveals that 4(CF3SO3)4, 6(CF3SO3)4, and 8(ClO4)4 consist of self-assembled molecular boxes containing two macrocyclic dicopper complexes, bridged by CO32- ligands. The bridging mode of the carbonate ligand is anti-anti-mu-eta1:eta1 in 4(CF3SO3)4, anti-anti-mu-eta2:eta1 in 6(CF3SO3)4 and anti-anti-mu-eta2:eta2 in 5(CF3SO3)2 and 8(ClO4)4. Magnetic susceptibility measurements on 4(CF3SO3)4, 6(CF3SO3)4, and 8(ClO4)4 indicate that the carbonate ligands mediate antiferromagnetic coupling between each pair of bridged CuII ions (J = -23.1, -108.3, and -163.4 cm-1, respectively, H = -JS1S2). Detailed kinetic analyses of the reaction between carbon dioxide and the macrocyclic complexes 1(CF3SO3)2 and 2(CF3SO3)2 suggest that it is actually hydrogen carbonate formed in aqueous solution on dissolving CO2 that is responsible for the observed formation of the different carbonate complexes controlled by the binding mode of the hydroxy ligands. This study shows that CO2 fixation can be used as an on/off switch for the reversible self-assembly of supramolecular structures based on macrocyclic dicopper complexes.  相似文献   

2.
p-tert-Butylcalix[4]arene, [CalixBut(OH)4], reacts with Mo(PMe3)6 and W(PMe3)4(eta2-CH2PMe2)H to yield compounds of composition {[CalixBut(OH)2(O)2]M(PMe3)3H2} which exhibit unprecedented use of a C-H bond of a calixarene methylene group as a binding functionality in the form of agostic and alkyl hydride derivatives. Thus, X-ray diffraction studies demonstrate that, in the solid state, the molybdenum complex [CalixBut(OH)2(O)2]Mo(PMe3)3H2 exists as an agostic derivative with a Mo...H-C interaction, whereas the tungsten complex exists as a metallated trihydride [Calix-HBut(OH)2(O)2]W(PMe3)3H3. Solution 1H NMR spectroscopic studies, however, provide evidence that [Calix-HBut(OH)2(O)2]W(PMe3)3H3 is in equilibrium with its agostic isomer [CalixBut(OH)2(O)2]W(PMe3)3H2. Dynamic NMR spectroscopy also indicates that the [M(PMe3)3H2] fragments of both the molybdenum and tungsten complexes [CalixBut(OH)2(O)2]M(PMe3)3H2 migrate rapidly around the phenolic rim of the calixarene on the NMR time scale, an observation that is in accord with incorporation of deuterium into the methylene endo positions upon treatment of the isomeric mixture of [CalixBut(OH)2(O)2]W(PMe3)3H2 and [Calix-HBut(OH)2(O)2]W(PMe3)3H3 with D2. Treatment of {[CalixBut(OH)2(O)2]W(PMe3)3H2} with Ph2C2 gives the alkylidene complex [CalixBut(O)4]W=C(Ph)Ar [Ar = PhCC(Ph)CH2Ph].  相似文献   

3.
Treatment of the allyl-containing compounds Me2Si(CH2CHCH2)2 and MeSi(CH2CHCH2)3 with thioacetic acid in the presence of AIBN gave Me2Si[(CH2)3SC(O)CH3]2 and MeSi[(CH2)3SC(O)CH3]3, respectively, which were reduced with LiAlH4 to the dithiols Me2Si[(CH2)3SH]2(3) and MeSi[(CH2)3SH]3(4). This protocol was applied to the first and second generations of the doubly and triply-branched carbosilane allyl dendrimers, Si[(CH2)3SiMe(CH2CHCH2)2]4(G(1)allyl-8), Si[(CH2)3SiMe{(CH2)3SiMe(CH2CHCH2)2}2]4(G(2)allyl-16), Si[(CH2)3Si(CH2CHCH2)3]4(G(1)allyl-12), and Si[(CH2)3Si{(CH2)3Si(CH2CHCH2)3}3]4(G(2)allyl-36) to give the corresponding SH functionalised surface dendrimers Si[(CH2)3SiMe(CH2CH2CH2SH)2]4(G(1)SH-8), G(2)SH-16, G(1)SH-12, and G(2)SH-36. Reactions of 3 with [M(acac)(diolefin)](M = Rh, Ir; diolefin = 1,5-cyclooctadiene, 2,5-norbornadiene) gave the compounds of the type [M2(mu-Me2Si[(CH2)3S]2)(diolefin)2]n. These diolefin complexes are octanuclear (n= 4) in solution while the complex [Rh2(mu-Me2Si[(CH2)3S]2)(cod)2]n(5) is tetranuclear in the solid state. The structure of 5, solved by X-ray diffraction methods, consists of a 20-membered metallomacrocycle formed by two dimethylbis(propylthiolate)silane moieties bridging four fragments Rh(cod) in a mu2 fashion through the sulfur atoms. Treatment of [Rh(acac)(CO)2] with 3 gave [Rh2(mu-Me2Si[(CH2)3S]2)(CO)4]n, which is a mixture of tetra (n= 2) and octanuclear (n= 4) complexes in a 2 : 1 ratio in solution, while the related complex [Rh2(mu-Me2Si[(CH2)3S]2)(CO)2(PPh3)2]2 is tetranuclear. Reactions of [Rh(acac)(L-L)](L-L = cod, (CO)2, (CO)(PPh3)) with 4 and the dendrimers G(1)SH-8, G(2)SH-16, and G(1)SH-12, gave microcrystalline solids of formulae [Rh3(MeSi[(CH2)3S]3)(L-L)3]n, [Si[(CH2)3SiMe{(CH2)3SRh(cod)}2]4]n([G(1)Rh(cod)-8]n), [Si[(CH2)3Si{(CH2)3SRh(cod)}3]4]n([G(1)Rh(cod)-12]n), etc., which presumably are tridimensional coordination polymers.  相似文献   

4.
Metal complexation studies were performed with AgSO(3)CF(3) and AgBF(4) and the ditopic pyrimidine-hydrazone ligand 6-(hydroxymethyl)pyridine-2-carboxaldehyde (2-methylpyrimidine-4,6-diyl)bis(1-methylhydrazone) (1) in both CH(3)CN and CH(3)NO(2) in a variety of metal-to-ligand ratios. The resulting complexes were studied in solution by NMR spectroscopy and in the solid state by X-ray crystallography. Reacting either AgSO(3)CF(3) or AgBF(4) with 1 in either CH(3)CN or CH(3)NO(2) in a 1:1 metal-to-ligand ratio produced a double helicate in solution. This double helicate could be converted into a linear complex by increasing the metal-to-ligand ratio; however, the degree of conversion depended on the solvent and counteranion used. Attempts to crystallize the linear AgSO(3)CF(3) complex resulted in crystals with the dimeric structure [Ag(2)1(CH(3)CN)(2)](2)(SO(3)CF(3))(4) (2), while attempts to crystallize the AgSO(3)CF(3) double helicate from CH(3)CN resulted in crystals of another dimeric complex, [Ag(2)1(SO(3)CF(3))(CH(3)CN)(2)](2)(SO(3)CF(3))(2)·H(2)O (3). The AgSO(3)CF(3) double helicate was successfully crystallized from a mixture of CH(3)CN and CH(3)NO(2) and had the structure [Ag(2)1(2)](SO(3)CF(3))(2)·3CH(3)NO(2) (4). The linear AgBF(4) complex could not be isolated from the double helicate in solution; however, crystals grown from a solution containing both the AgBF(4) double helicate and linear complexes in CH(3)CN had the structure [Ag(2)1(CH(3)CN)(2)](BF(4))(2) (5). The AgBF(4) double helicate could only be crystallized from CH(3)NO(2) and had the structure [Ag(2)1(2)](BF(4))(2)·2CH(3)NO(2) (6).  相似文献   

5.
Reactions of oligomeric "Ca(dbbfo)2" and Ca9(CH3OCH2CH2O)18(CH3OCH2CH2OH)2 with Al(CH3)3 in toluene gave tetranuclear heterobimetallic [Ca(mu-dbbfo){(mu-dbbfo)(mu-CH3)Al(CH3)2}]2 (71%) and polymeric Ca{(mu-CH3OCH2CH2O)(mu-CH3)Al(CH3)2}2 (86%). The latter can be obtained as monomeric THF adduct Ca{(mu-CH3OCH2CH2O)Al(CH3)3}2(THF)2 (78%) when a mixture of solvents is used. The results, including an initial L-lactide polymerization test, are discussed in the context of calcium alkoxo cluster degradation in solution.  相似文献   

6.
The reactions of [N(3)P(3)Cl(6)] with one, two, or three equivalents of the difunctional 1,2-closo-carborane C(2)B(10)H(10)[CH(2)OH](2) and K(2)CO(3) in acetone have been investigated. These reactions led to the new spiro-closo-carboranylphosphazenes gem-[N(3)P(3)Cl(6-2n)[(OCH(2))(2)C(2)B(10)H(10)](n)] (n=1 (1), 2 (2)) and the first fully carborane-substituted phosphazene gem-[N(3)P(3)[(OCH(2))(2)C(2)B(10)H(10)](3)] (3). A bridged product, non-gem-[N(3)P(3)Cl(4)[(OCH(2))(2)C(2)B(10)H(10)]] (4), was also detected. The reaction of the well-known spiro derivatives [N(3)P(3)Cl(2)(O(2)C(12)H(8))(2)] and [N(3)P(3)Cl(4)(O(2)C(12)H(8))] with the same carborane-diol and K(2)CO(3) in acetone gave the new compounds gem-[N(3)P(3)(O(2)C(12)H(8))(3-n)[(OCH(2))(2)C(2)B(10)H(10)](n)] (n=1 (5) or 2 (6), respectively), without signs of intra- or intermolecularly bridged species. Upon treatment with NEt(3) in acetone, compound 5 was converted into the corresponding nido-carboranylphosphazene. However, the reaction of gem-[N(3)P(3)(O(2)C(12)H(8))(2)[(OCH(2))(2)C(2)B(10)H(10)]] (5) with NEt(3) in ethanol instead of acetone proceeded in a different manner to give the new compound (NHEt(3))(2)[N(3)P(3)(O(2)C(12)H(8))(2)(O)[OCH(2)C(2)B(9)H(10)CH(2)OCH(2)CH(3)]] (7). For compounds with two 2,2'-dioxybiphenyl units, gem-[N(3)P(3)(O(2)C(12)H(8))(2)[(OCH(2))(2)C(2)B(10)H(10)]] (5), (NHEt(3))[N(3)P(3)(O(2)C(12)H(8))(2)[(OCH(2))(2)C(2)B(9)H(10)]] (8), and (NHEt(3))(2)[N(3)P(3)(O(2)C(12)H(8))(2)(O)[OCH(2)C(2)B(9)H(10)CH(2)OCH(2)CH(3)]] (7), a mixture of different stereoisomers may be expected. However, for 5 and 7 only the meso compounds seem to be formed, with the same (R,S)-configuration as in the precursor [N(3)P(3)Cl(2)(O(2)C(12)H(8))(2)]. The reaction of 5 to give 8 seems to proceed with a change of configuration at one phosphorus center, giving a racemic mixture. The crystal structures of the nido-carboranylphosphazenes 7 and 8 have been confirmed by X-ray diffraction methods.  相似文献   

7.
Reaction of [RhCl(PPh3)2]2 with parahydrogen revealed that the binuclear dihydride [Rh(H)2(PPh3)2mu-Cl)2Rh(PPh3)2] and the tetrahydride complex [Rh(H)2(PPh3)2(mu-Cl)]2 are readily formed. While magnetisation transfer from free H2 into both the hydride resonances of the tetrahydride and [Rh(H)2Cl(PPh3)3] is observable, neither transfer into [Rh(H)2(PPh3)2(mu-Cl)2Rh(PPh3)2] nor transfer between the two binuclear complexes is seen. Consequently [Rh(H)2(PPh3)2(mu-Cl)]2 and [Rh(H)2(PPh3)2(mu-Cl)2Rh(PPh3)2] are not connected on the NMR timescale by simple elimination or addition of H2. The rapid exchange of free H2 into the tetrahydride proceeds via reversible halide bridge rupture and the formation of [Rh(H)2(PPh3)2(mu-Cl)RhCl(H)2(PPh3)2]. When these reactions are examined in CD2Cl2, the formation of the solvent complex [Rh(H)2(PPh3)2(mu-Cl)2Rh(CD2Cl2)(PPh3)] and the deactivation products [Rh(Cl)(H)PPh3)2(mu-Cl)(mu-H)Rh(Cl)(H)PPh3)2] and [Rh(Cl)(H)(CD2Cl2)(PPh3)(mu-Cl)(mu-H)Rh(Cl)(H)PPh3)2] is indicated. In the presence of an alkene and parahydrogen, signals corresponding to binuclear complexes of the type [Rh(H)2(PPh3)2(mu-Cl)(2)(Rh)(PPh3)(alkene)] are detected. These complexes undergo intramolecular hydride interchange in a process that is independent of the concentration of styrene and catalyst and involves halide bridge rupture, followed by rotation about the remaining Rh-Cl bridge, and bridge re-establishment. This process is facilitated by electron rich alkenes. Magnetisation transfer from the hydride ligands of these complexes into the alkyl group of the hydrogenation product is also observed. Hydrogenation is proposed to proceed via binuclear complex fragmentation and trapping of the resultant intermediate [RhCl(H)2PPh3)2] by the alkene. Studies on a number of other binuclear dihydride complexes including [(H)(Cl)Rh(PMe3)2(mu-H)(mu-Cl)Rh(CO)(PMe3)], [(H)2Rh(PMe3)2(mu-Cl)2Rh(CO)(PMe3)] and [HRh(PMe3)2(mu-H)(mu-Cl)2Rh(CO)(PMe3)] reveal that such species are able to play a similar role in hydrogenation catalysis. When the analogous iodide complexes [RhIPPh3)2]2 and [RhI(PPh3)3] are examined, [Rh(H)2(PPh3)2(mu-I)2Rh(PPh3)2], [Rh(H)2(PPh3)2(mu-I)]2 and [Rh(H)2I(PPh3)3] are observed in addition to the corresponding binuclear alkene-dihydride products. The higher initial activity of these precursors is offset by the formation of the trirhodium phosphide bridged deactivation product, [[(H)(PPh3)Rh(mu-H)(mu-I)(mu-PPh2)Rh(H)(PPh3)](mu-I)2Rh(H)2PPh3)2]  相似文献   

8.
An equilibrium mixture of alkyl alkylidyne W(CH2SiMe3)3(CSiMe3)(PMe3) (1a) and its bis(alkylidene) tautomer W(CH2SiMe3)2(=CHSiMe3)2(PMe3) (1b) has been found to undergo an alpha-hydrogen abstraction reaction in the presence of PMe3 to form alkyl alkylidene alkylidyne W(CH2SiMe3)(=CHSiMe3)(CSiMe3)(PMe3)2 (2). In the presence of PMe3, the formation of 2 follows first-order kinetics, and the observed rate constant was found to be independent of the concentration of PMe3. The activation parameters for the formation of 2 are Delta H = 28.3(1.7) kcal/mol and Delta S = 3(5) eu. In the presence of PMe2Ph, an equilibrium mixture of W(CH2SiMe3)3(CSiMe3)(PMe2Ph) (3a) and its bis(alkylidene) tautomer W(CH2SiMe3)2(=CHSiMe3)2(PMe2Ph) (3b) was similarly converted to W(CH2SiMe3)(=CHSiMe3)(CSiMe3)(PMe2Ph)2 (4). The observed rate of this reaction was also independent of the concentration of PMe2Ph. These observations suggest a pathway in which the tautomeric mixtures 1a,b and 3a,b undergo rate-determining, alpha-hydrogen abstraction, followed by phosphine coordination, resulting in the formation of the alkyl alkylidene alkylidyne complexes 2 and 4.  相似文献   

9.
Treatment of [CpRu(PPh(3))(2)Cl] 1 with the stoichiometric amount of H(3)PO(2) or H(3)PO(3) in the presence of chloride scavengers (AgCF(3)SO(3) or TlPF(6)) yields compounds of formula [CpRu(PPh(3))(2)(HP(OH)(2))]Y (Y = CF(3)SO(3) 2a or PF(6) 2b) and [CpRu(PPh(3))(2)(P(OH)(3))]Y (Y = CF(3)SO(3) 3aor PF(6) 3b) which contain, respectively, the HP(OH)(2) and P(OH)(3) tautomers of hypophosphorous and phosphorous acids bound to ruthenium through the phosphorus atom. The triflate derivatives 2a and 3a react further with hypophosphorous or phosphorous acids to yield, respectively, the complexes [CpRu(PPh(3))(HP(OH)(2))(2)]CF(3)SO(3) 4 and [CpRu(PPh(3))(P(OH)(3))(2)]CF(3)SO(3) 5 which are formed by substitution of one molecule of the acid for a coordinated triphenylphosphine molecule. The compounds 2 and 3 are quite stable in the solid state and in solutions of common organic solvents, but the hexafluorophosphate derivatives undergo easy transformations in CH(2)Cl(2): the hypophosphorous acid complex 2b yields the compound [CpRu(PPh(3))(2)(HP(OH)(2))]PF(2)O(2) 6, whose difluorophosphate anion originates from hydrolysis of PF(6)(-); the phosphorous acid complex 3b yields the compound [CpRu(PPh(3))(2)(PF(OH)(2))]PF(2)O(2) 7, which is produced by hydrolysis of hexafluorophosphate and substitution of a fluorine for an OH group of the coordinated acid molecule. All the compounds have been characterized by elemental analyses and NMR measurements. The crystal structures of 2a, 3a and 7 have been determined by X-ray diffraction methods.  相似文献   

10.
Herein we describe the importance of side chains in C3-symmetric ligands in supramolecular chemistry. The reaction of the new ligand tris(5-bromo-2-methoxybenzylidene)triaminoguanidinium chloride [H3Me3Br3L]Cl (1) with ZnCl2 results in the formation of the monomeric complex (Et3NH)2[(ZnCl2)3Me3Br3L] (2), in which the ligand remains in a conformation less favourable for the coordination of metal centres. The use of the related tris(5-bromo-2-hydroxybenzylidene)triaminoguanidinium chloride, [H6Br3L]Cl, under similar conditions, results in the formation of two different dimeric compounds (NH4)[{[Zn(NH3)]3Br3L}2{mu-(OH)}3]1/4MeOH (3) and [Zn{Zn2(OH2)3(NH3)Br3L}2] (4), depending on the solvent mixture used. The comparable reaction of the ligand tris(5-bromo-2-hydroxy-3-methoxybenzylidene)triaminoguanidinium chloride [H6(OMe)3Br3L]Cl (5), leads to the formation of a doughnut-shaped, protein-sized coordination oligomer (Et3NH)18[{Zn[Zn2Cl{(OMe)3Br3L}]2}6(mu-Cl)6(OH2)6]x CH3CN (6), which comprises six dimeric [Zn5{(OMe)3Br3L}2] units. Whereas 3 and 4 decompose in DMSO solution, 6 is surprisingly stable in the same solvent.  相似文献   

11.
Cai H  Yu X  Chen S  Qiu H  Guzei IA  Xue ZL 《Inorganic chemistry》2007,46(19):8071-8078
M(NMe2)4 (M = Zr, 1a; Hf, 1b) and the silyl anion (SiButPh2)- (2) in Li(THF)2SiButPh2 (2-Li) were found to undergo a ligand exchange to give [M(NMe2)3(SiButPh2)2]- (M = Zr, 3a; Hf, 3b) and [M(NMe2)5]- (M = Zr, 4a; Hf, 4b) in THF. The reaction is reversible, leading to equilibria: 2 1a (or 1b) + 2 2 <--> 3a (or 3b) + 4a (or 4b). In toluene, the reaction of 1a with 2 yields [(Me2N)3Zr(SiButPh2)2]-[Zr(NMe2)5Li2(THF)4]+ (5) as an ionic pair. The silyl anion 2 selectively attacks the -N(SiMe3)2 ligand in (Me2N)3Zr-N(SiMe3)2 (6a) to give 3a and [N(SiMe3)2]- (7) in reversible reaction: 6a + 2 2 <--> 3a + 7. The following equilibria have also been observed and studied: 2M(NMe2)4 (1a; 1b) + [Si(SiMe3)3]- (8) <--> (Me2N)3M-Si(SiMe3)3 (M = Zr, 9a; Hf, 9b) + [M(NMe2)5]- (M = Zr, 4a; Hf, 4b); 6a (or 6b) + 8 <--> 9a (or 9b) + [N(SiMe3)2]- (7). The current study represents rare, direct observations of reversible amide-silyl exchanges and their equilibria. Crystal structures of 5, (Me2N)3Hf-Si(SiMe3)3 (9b), and [Hf(NMe2)4]2 (dimer of 1b), as well as the preparation of (Me2N)3M-N(SiMe3)2 (6a; 6b) are also reported.  相似文献   

12.
The synthesis and magnetic properties of the compounds [HNEt(3)][Fe(2)(OMe)(Ph-sao)(2) (Ph-saoH)(2)].5MeOH (1.5MeOH), [Fe(3)O(Et-sao)(O(2)CPh)(5)(MeOH)(2)].3MeOH (2.3MeOH), [Fe(4)(Me-sao)(4)(Me-saoH)(4)] (3), [HNEt(3)](2)[Fe(6)O(2)(Me-sao)(4)(SO(4))(2)(OMe)(4)(MeOH)(2)] (4), [Fe(8)O(3)(Me-sao)(3)(tea)(teaH)(3)(O(2)CMe)(3)] (5), [Fe(8)O(3)(Et-sao)(3)(tea)(teaH)(3)(O(2)CMe)(3)] (6), and [Fe(8)O(3)(Ph-sao)(3)(tea)(teaH)(3)(O(2)CMe)(3)] (7) are reported (Me-saoH(2) is 2'-hydroxyacetophenone oxime, Et-saoH(2) is 2'-hydroxypropiophenone oxime and Ph-saoH(2) is 2-hydroxybenzophenone oxime). 1-7 are the first Fe(III) compounds synthesised using the derivatised salicylaldoxime ligands, R-saoH(2). 1 is prepared by treatment of Fe(2)(SO(4))(3).6H(2)O with Ph-saoH(2) in the presence of NEt(3) in MeOH; 2 prepared by treatment of Fe(ClO(4))(2).6H(2)O with Et-saoH(2) and NaO(2)CPh in the presence of NEt(4)OH in MeOH; 3 prepared by treatment of Fe(ClO(4))(2).6H(2)O with Me-saoH(2) and NaO(2)CCMe(3) in the presence of NEt(4)OH in MeOH; and 4 prepared by treatment of Fe(2)(SO(4))(3).6H(2)O with Me-saoH(2) in the presence of NEt(3) in MeOH. 4 is a rare example of a polynuclear iron complex containing a coordinated SO(4)(2-) ion. Compounds 5-7 are prepared by treatment of Fe(O(2)CMe)(2) with Me-saoH(2) (5), Et-saoH(2) (6), Ph-saoH(2) (7) in the presence of H(3)tea (triethanolamine) in MeOH, and represent the largest nuclearity Fe(III) clusters containing salicyladoxime-based ligands, joining a surprisingly small family of characterised octanuclear Fe complexes. Variable temperature magnetic susceptibilty measurements of 1, 3 and 5-7 reveal all five complexes possess S = 0 spin ground states; 2 possesses an S = 1/2 spin ground state, while 4 has an S = 4 +/- 1 spin ground state.  相似文献   

13.
Reaction of 3,5-(CF(3))(2)PzLi with [Rh(μ-Cl)(η(2)-C(2)H(4))(2)](2) or [Rh(μ-Cl)(PMe(3))(2)](2) in Et(2)O gave the dinuclear complexes [Rh(η(2)-C(2)H(4))(2)(μ-3,5-(CF(3))(2)-Pz)](2) (1) and [Rh(2)(μ-Cl)(μ-3,5-(CF(3))(2)-Pz) (PMe(3))(4)] (2) respectively (3,5-(CF(3))(2)Pz = bis-trifluoromethyl pyrazolate). Reaction of PMe(3) with [Rh(COD)(μ-3,5-(CF(3))(2)-Pz)](2) in toluene gave [Rh(3,5-(CF(3))(2)-Pz)(PMe(3))(3)] (3). Reaction of 1 and 3 in toluene (1?:?4) gave moderate yields of the dinuclear complex [Rh(PMe(3))(2)(μ-3,5-(CF(3))(2)-Pz)](2) (4). Reaction of 3,5-(CF(3))(2)PzLi with [Rh(PMe(3))(4)]Cl in Et(2)O gave the ionic complex [Rh(PMe(3))(4)][3,5-(CF(3))(2)-Pz] (5). Two of the complexes, 1 and 3, were studied for use as CVD precursors. Polycrystalline thin films of rhodium (fcc-Rh) and metastable-amorphous films of rhodium phosphide (Rh(2)P) were grown from 1 and 3 respectively at 170 and 130 °C, 0.3 mmHg in a hot wall reactor using Ar as the carrier gas (5 cc min(-1)). Thin films of amorphous rhodium and rhodium phosphide (Rh(2)P) were grown from 1 and 3 at 170 and 130 °C respectively at 0.3 mmHg in a hot wall reactor using H(2) as the carrier gas (7 cc min(-1)).  相似文献   

14.
The hydrothermal reactions of a Cu(II) starting material, a molybdate source, 2,2'-bipyridine or terpyridine, and the appropriate alkyldiphosphonate ligand yield two series of bimetallic organophosphonate hybrid materials of the general types [Cu(n)(bpy)(m)Mo(x)O(y)(H(2)O)(p)[O(3)P(CH(2))(n)PO(3)](z)] and [Cu(n)(terpy)(m)Mo(x)O(y)(H(2)O)(p)[O(3)P(CH(2))(n)PO(3)](z)]. The bipyridyl series includes the one-dimensional materials [Cu(bpy)(MoO(2))(H(2)O)(O(3)PCH(2)PO(3))] (1) and [[Cu(bpy)(2)][Cu(bpy)(H(2)O)](Mo(5)O(15))(O(3)PCH(2)CH(2)CH(2)CH(2)PO(3))].H(2)O (5.H(2)O) and the two-dimensional hybrids [Cu(bpy)(Mo(2)O(5))(H(2)O)(O(3)PCH(2)PO(3))].H(2)O (2.H(2)O), [[Cu(bpy)](2)(Mo(4)O(12))(H(2)O)(2)(O(3)PCH(2)CH(2)PO(3))].2H(2)O (3.2H(2)O), and [Cu(bpy)(Mo(2)O(5))(O(3)PCH(2)CH(2)CH(2)PO(3))](4). The terpyridyl series is represented by the one-dimensional [[Cu(terpy)(H(2)O)](2)(Mo(5)O(15))(O(3)PCH(2)CH(2)PO(3))].3H(2)O (7.3H(2)O) and the two-dimensional composite materials [Cu(terpy)(Mo(2)O(5))(O(3)PCH(2)PO(3))] (6) and [[Cu(terpy)](2)(Mo(5)O(15))(O(3)PCH(2)CH(2)CH(2)PO(3))] (8). The structures exhibit a variety of molybdate building blocks including isolated [MoO(6)] octahedra in 1, binuclear subunits in 2, 4, and 6, tetranuclear embedded clusters in 3, and the prototypical [Mo(5)O(15)(O(3)PR)(2)](4-) cluster type in 5, 7, and 8. These latter materials exemplify the building block approach to the preparation of extended structures.  相似文献   

15.
The reactions of the hydrido-triruthenium cluster complex [Ru3(mu-H)(mu3-kappa(2)-HNNMe2)(CO)9] (1; H2NNMe2 = 1,1-dimethylhydrazine) with alkynes that have alpha-hydrogen atoms give trinuclear derivatives containing edge-bridging allyl or face-capping alkenyl ligands. Under mild conditions (THF, 70 degrees C) the isolated products are as follows: [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(3)-1-syn-Me-3-anti-EtC3H3)(mu-CO)2(CO)6] (2) and [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(3)-1-syn-Me-3-syn-EtC3H3)(mu-CO)2(CO)6] (3) from 3-hexyne; [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(3)-3-anti-PhC3H4)(mu-CO)2(CO)6] (4), [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(2)-MeCCHPh)(mu-CO)2(CO)6] (5) and [Ru3(mu3-kappa(2)-HNNMe2)(mu3-kappa(2)-PhCCHMe)(mu-CO)2(CO)6] (6) from 1-phenyl-1-propyne; [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(2)-3-anti-PrC3H4)(mu-CO)2(CO)6] (7), [Ru3(mu3-kappa(2)-HNNMe2)(mu3-kappa(2)-BuCCH2)(mu-CO)2(CO)6] (8), and [Ru3(mu3-kappa(2)-HNNMe2)(mu3-kappa(2)-HCCHBu)(mu-CO)2(CO)6] (9) from 1-hexyne; [Ru3(mu3-kappa(2)-HNNMe2)(mu3-kappa(2)-HOH2CCCH2)(mu-CO)2(CO)6] (10) from propargyl alcohol; and [Ru3(mu3-kappa(2)-HNNMe2)(mu3-kappa(2)-MeOCH2CCH2)(mu-CO)2(CO)6] (11) from 3-methoxy-1-propyne. The regioselectivity of these reactions depends upon the nature of the alkyne reagent, which affects considerably the kinetic barriers of important reaction steps and the stability of the final products. It has been established that the face-capped alkenyl derivatives are not precursors to the allyl products, which are formed via edge-bridged alkenyl intermediates. At higher temperature (toluene, 110 degrees C), the complexes that have allyl ligands with an anti substituent are isomerized into allyl derivatives with that substituent in the syn position, for example, 4 into [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(3)-3-syn-PhC3H4)(mu-CO)2(CO)6] (14). The diene complex [Ru3(mu-H)(mu3-kappa(2)-HNNMe2)(mu-kappa(4)-trans-EtC4H5)(CO)7] (13) has been obtained from the thermolysis of compounds 2 and 7 at 110 degrees C (3 and [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(2)-3-syn-PrC3H4)(mu-CO)2(CO)6] (12) are also formed in these reactions). A DFT theoretical study has allowed a comparison of the thermodynamic stabilities of isomeric compounds and has helped rationalize the experimental results. Mechanistic proposals for the synthesis of the allyl complexes and their isomerization processes are also provided.  相似文献   

16.
The reactions of (HOCH2)2P(C6H4)P(CH2OH)2 (HMPB) and P(CH2OH)3 (THP) with RhCl3.xH2O in aqueous media gave water-soluble complexes cis-[RhCl2{eta2-(HOCH2)2P(C6H4)P(CH2OH)2}2]Cl (3) and fac-[RhCl3(P(CH2OH)3)3] (4) respectively in good yields, X-ray crystal structures of 3 and 4 confirmed their molecular constitution. These reactions provide the first examples demonstrating the kinetic propensity of hydroxymethyl phosphanes to stabilize Rh in +3 oxidation state in water.  相似文献   

17.
The reactivity of p-tert-butyltetrathiacalix[4]arene, [S4CalixBut(OH)4], and p-tert-butyltetrasulfonylcalix[4]arene, [(SO2)4CalixBut(OH)4], toward Mo(PMe3)5H2, Mo(PMe3)6, and W(PMe3)4(eta2-CH2PMe2)H has been used to synthesize a series of mononuclear molybdenum and tungsten calixarene compounds that feature both coordinatively saturated and unsaturated metal centers, such as [S4CalixBut(OH)2(O)2]M(PMe3)3H2 (M = Mo, W), [(SO2)4CalixBut(OH)2(O)2]M(PMe3)3H2, [S4CalixBut(OH)2(O)2]Mo(PMe3)3, [(SO2)4CalixBut(OH)2(O)2]Mo(PMe3)3, and [(SO2)4CalixBut(OH)(O)3]M(PMe3)3H. Comparison with the related {[CalixBut(OH)2(O)2]M} complexes indicates that the chemistry of the system is strongly influenced by the nature of the calixarene linker, that is, CH2, S, and SO2. For example, in contrast to the methylene-bridged calixarene system, the thiacalixarene and sulfonylcalixarene systems readily coordinate a second metal center to form homo- and heterodinuclear complexes, namely {[S4CalixBut(O)4]}[M(PMe3)3H2]2, {[(SO2)4CalixBut(O)4]}[Mo(PMe3)3H2]2 and {[S4CalixBut(O)4]}[Mo(PMe3)3H2][W(PMe3)3H2]. Of most interest, incorporation of nickel into [S4CalixBut(OH)2(O)2]M(PMe3)3H2 using Ni(PMe3)4 results in cleavage of a C- bond to give [(SArButOH)(SArButO)3][M(PMe3)3H2][Ni(PMe3)2], an observation that is of relevance to the role that nickel plays in hydrodesulfurization catalysis.  相似文献   

18.
A variety of inter- and intramolecular dehydration was found in the reactions of [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)(mu-S(2))](CF(3)SO(3))(4) (1) with hydroxyl substituted alkenes and alkynes. Treatment of 1 with allyl alcohol gave a C(3)S(2) five-membered ring complex, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCH(2)CH(2)CH(OCH(2)CH=CH(2))S]](CF(3)SO(3))(4) (2), via C-S bond formation after C-H bond activation and intermolecular dehydration. On the other hand, intramolecular dehydration was observed in the reaction of 1 with 3-buten-1-ol giving a C(4)S(2) six-membered ring complex, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2) [mu-SCH(2)CH=CHCH(2)S]](CF(3)SO(3))(4) (3). Complex 1 reacts with 2-propyn-1-ol or 2-butyn-1-ol to give homocoupling products, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCR=CHCH(OCH(2)C triple bond CR)S]](CF(3)SO(3))(4) (4: R = H, 5: R = CH(3)), via intermolecular dehydration. In the reaction with 2-propyn-1-ol, the intermediate complex having a hydroxyl group, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCH=CHCH(OH)S]](CF(3)SO(3))(4) (6), was isolated, which further reacted with 2-propyn-1-ol and 2-butyn-1-ol to give 4 and a cross-coupling product, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCH=CHCH(OCH(2)C triple bond CCH(3))S]](CF(3)SO(3))(4) (7), respectively. The reaction of 1 with diols, (HO)CHRC triple bond CCHR(OH), gave furyl complexes, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SSC=CROCR=CH]](CF(3)SO(3))(3) (8: R = H, 9: R = CH(3)) via intramolecular elimination of a H(2)O molecule and a H(+). Even though (HO)(H(3)C)(2)CC triple bond CC(CH(3))(2)(OH) does not have any propargylic C-H bond, it also reacts with 1 to give [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCH(2)C(=CH(2))C(=C=C(CH(3))(2))]S](CF(3)SO(3))(4) (10). In addition, the reaction of 1 with (CH(3)O)(H(3)C)(2)CC triple bond CC(CH(3))(2)(OCH(3)) gives [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(2)][mu-S=C(C(CH(3))(2)OCH(3))C=CC(CH(3))CH(2)S][Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)]](CF(3)SO(3))(4) (11), in which one molecule of CH(3)OH is eliminated, and the S-S bond is cleaved.  相似文献   

19.
Silyl anion SiButPh2- (2) was found to substitute an amide ligand in Zr(NMe2)4 (3) to give the disilyl complex Zr(NMe2)3(SiButPh2)2- (1a) and Zr(NMe2)5- (1b) in THF. The reaction is reversible, and nucleophilic amide NMe2- attacks the Zr-SiButPh2 bonds in 1a or Zr(NMe2)3(SiButPh2) in the reverse reaction, leading to an unusual ligand exchange equilibrium 2 3 + 2 2 right harpoon over left harpoon 1a + 1b (eq 1). The silyl anion 2 selectively attacks the -N(SiMe3)2 ligand in Zr(NMe2)3[N(SiMe3)2] (6) to give 1a and N(SiMe3)2- (7). Reversible reaction occurs as well, where 7 selectively substitutes the silyl ligand in Zr(NMe2)3(SiButPh2)2- (1a) or Zr(NMe2)3(SiButPh2), giving the equilibrium 6 + 2 2 right harpoon over left harpoon 1a + 7 (eq 3). The thermodynamics of these equilibria has been studied: For eq 1, DeltaH degrees = -8.3(0.2) kcal/mol, DeltaS degrees = -23.3(0.9) eu, and DeltaG degrees 298K = -1.4(0.5) kcal/mol at 298 K; for eq 3, DeltaH degrees = -1.61(0.12) kcal/mol, DeltaS degrees = -2.6(0.5) eu, and DeltaG degrees 298K = -0.8(0.3) kcal/mol. In both equilibria, the enthalpy changes for the forward reactions outweigh the entropy changes, and therefore the substitutions of amide ligands in Zr(NMe2)4 (3) and Zr(NMe2)3[N(SiMe3)2] (6) to afford the disilyl complex 1a are thermodynamically favored. The following equilibria were also observed and studied: Zr(NMe2)3[N(SiMe3)2] (6) + Si(SiMe3)3- (9) right harpoon over left harpoon Zr(NMe2)3[Si(SiMe3)3] (10) + N(SiMe3)2- (7) and Zr(NMe2)4 (3) + 9 right harpoon over left harpoon 10 + Zr(NMe2)5- (1b).  相似文献   

20.
Short-lived (CF(3))(3)B and (CF(3))(3)BCF(2) are generated as intermediates by thermal dissociation of (CF(3))(3)BCO and F(-) abstraction from the weak coordinating anion [B(CF(3))(4)](-), respectively. Both Lewis acids cannot be detected because of their instability with respect to rearrangement reactions at the B-C-F moiety. A cascade of 1,2-fluorine shifts to boron followed by perfluoroalkyl group migrations and also difluorocarbene transfer reactions occur. In the gas phase, (CF(3))(3)B rearranges to a mixture of linear perfluoroalkyldifluoroboranes C(n)()F(2)(n)()(+1)BF(2) (n = 2-7), while the respective reactions of (CF(3))(3)BCF(2) result in a mixture of linear (n = 2-4) and branched monoperfluoroalkyldifluoroboranes, e.g., (C(2)F(5))(CF(3))FCBF(2). For comparison, the reactions of [CF(3)BF(3)](-) and [C(2)F(5)BF(3)](-) with AsF(5) are studied, and the products in the case of [CF(3)BF(3)](-) are BF(3) and C(2)F(5)BF(2) whereas in the case of [C(2)F(5)BF(3)](-), C(2)F(5)BF(2) is the sole product. In contrast to reports in the literature, it is found that CF(3)BF(2) is too unstable at room temperature to be detected. The decomposition of (CF(3))(3)BCO in anhydrous HF leads to a mixture of the new conjugate Br?nsted-Lewis acids [H(2)F][(CF(3))(3)BF] and [H(2)F][C(2)F(5)BF(3)]. All reactions are modeled by density functional calculations. The energy barriers of the transition states are low in agreement with the experimental results that (CF(3))(3)B and (CF(3))(3)BCF(2) are short-lived intermediates. Since CF(2) complexes are key intermediates in the rearrangement reactions of (CF(3))(3)B and (CF(3))(3)BCF(2), CF(2) affinities of some perfluoroalkylfluoroboranes are presented. CF(2) affinities are compared to CO and F(-) affinities of selected boranes showing a trend in Lewis acidity, and its influence on the stability of the complexes is discussed. Fluoride ion affinities are calculated for a variety of different fluoroboranes, including perfluorocarboranes, and compared to those of the title compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号