首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Lessonia nigrescens and Lessonia trabeculata kelps have been tested for the sorption of mercury from aqueous solutions. A pretreatment (using CaCl2) allowed stabilizing the biomass that was very efficient for removing Hg(II) at pH 6–7. Sorption isotherms were described by the Langmuir equation with sorption capacities close to 240–270 mg Hg g−1 at pH 6. The temperature had a negligible effect on the distribution of the metal at equilibrium. The presence of chloride anions had a more marked limiting impact than sulfate and nitrate anions. The uptake kinetics were modeled using the pseudo-second-order equation that fitted better experimental data than the pseudo-first-order equation. The particle size hardly influenced sorption isotherms and uptake kinetics, indicating that sorption occurs in the whole mass of the biosorbent and that intraparticle mass transfer resistance was not the limiting rate. Varying the sorbent dosage and the initial metal concentration influenced the equilibrium, but the kinetic parameters were not drastically modified. Metal can be eluted with hydrochloric acid, citric acid, or acidic KI solutions.  相似文献   

2.
Chitosan was modified by grafting 2-pyridyl-ethyl moieties on the biopolymer backbone for the synthesis of a Platinum Group Metal (PGM) sorbent. The sorbent was tested for Pd(II) and Pt(IV) sorption from HCl solutions. Stable for HCl concentrations below 0.5 M, the sorbent reached sorption capacities as high as 3.2 and 2.6 mmol metal g−1 for Pd(II) and Pt(IV), respectively. Metal sorption mainly proceeds by electrostatic attraction in acidic solutions, though a contribution of complexation mechanism cannot be totally rejected. The resistance to intraparticle diffusion is the main controlling mechanism for uptake kinetics. While agitation speed has a limited effect on kinetics, metal concentration and sorbent dosage have a greater effect on the kinetic profiles. The intraparticle diffusivity varies between 3 × 10−11 and 4.5 × 10−10 m2 min−1. Thiourea (combined with HCl solution) is used for Pd(II) and Pt(IV) desorption. The resin could be desorbed and recycled for a minimum of five cycles maintaining high efficiencies of sorption and desorption.  相似文献   

3.
Two types of chelating sorbents with different types of addition of iminodipropionate groups to a polymeric matrix were synthesized: carboxyethylated aminopolystyrene (sorbent 1) based on linear polystyrene and carboxyethylaminomethylpolystyrene (sorbent 2) based on the copolymer of styrene and divinylbenzene. The ionization constants and concentrations of functional groups of the sorbents (exchange capacity for hydrogen ions) were determined. The sorbents exhibit high selectivity for copper(II) ions with the maximum of sorption from ammonia—acetate buffer solutions lying in a range of pH 5.0–7.5. The time needed for a solution of copper(II)—sorbent system with continuous stirring to reach exchange equilibrium is 3.5 and 2 h for sorbents 1 and 2, respectively. The exchange capacity for copper(II) ions is 2.54 and 0.10 mmol g−1, respectively. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 800–806, May, 2006.  相似文献   

4.
The sorption behavior of a newly synthesized silica gel sorbent with thioetheric sites (STS) towards microgram levels of Au(III), Pt(IV) and Pd(II) was studied. Au(III) is quantitatively (>95%) sorbed in the pH region of 1–9. The sorption of Pt(IV) starts at pH 1 and does not exceed 25% in the entire pH region examined. The sorption of Pd(II) starts at pH 7 and reaches 80% at pH 9. The sorption of Au(III) on STS at pH 1 is not affected by milligram amounts of Ni(II), Zn(II), Fe(III), Cu(II), Pb(II), Cd(II) or Co(II). Au(III) is quantitatively eluted with a 5% aqueous solution of thiourea. The adsorption capacity of STS towards Au(III) is 195 mg g−1. The detection limit (DL) of Au(III) (3σ, n = 9) is 25 ng mL−1. The RSD at a level of 10 × DL is about 2%. Solid-phase extraction of trace amounts of Au(III) on the STS sorbent, followed by its flame AAS determination in the eluate was applied to the determination of gold in geological samples. The results obtained for the gold content in the samples were in good agreement with those of the ICP-AES analysis.  相似文献   

5.
Silica gel was prepared by the sol–gel method, modified with nanometer-sized zirconium oxide, and this material was characterized by X-ray diffraction. A micro-column packed with silica gel modified with nanometer zirconium oxide as sorbent has been developed for the quantitative separation and preconcentration of trace amounts of chromium(III) prior to their determination by electrothermal atomic absorption spectrometry. Total chromium was determined after the reduction of chromium(VI) to chromium(III) by 10% (m/v) of aqueous ascorbic acid as reducing reagent. The adsorption capacity for chromium(III) was found to be 2.36 mg g−1. The detection limit for chromium(III) was 15 ng L−1 with an enrichment factor of 100. The relative standard deviation was 3.2% (n = 7, c = 2.0 ng mL−1).  相似文献   

6.
The sorption behavior of Sn(II) onto Haro river sand has been examined with respect to nature of electrolyte, agitation time, dosage of sorbent and concentration of sorbate. Maximum sorption (95.5%) has been achieved from 0.034M hydrochloric acid solution after equilibrating sorbate (2·10−5M) and sorbent (50 mg) for 120 minutes at aV/W ratio of 90 cm3·g−1. The kinetic data have been subjected to Morris-Weber and Lagergren equations. The kinetics of sorption proceeds a two stage process consisting of a relatively slow initial uptake followed by a much rapid increase in the sorption. The rate constant of intraparticle transport, Kd, comes out to be 8.75·10−8 mol·g−1·min−1/2 and the first order rate constant for sorption is 0.0416 min−1. The sorption data of Sn(II) onto Haro river sand followed Langmuir, Freundlich and Dubinin-Radushkevich (D-R) type isotherms. The Langmuir constant,Q, related to sorption capacity and,b, related to sorption energy are computed to be 10.6±1.1 μmol·g−1 and 1123±137 dm3·mol−1, respectively. The D-R isotherm yields the values ofC m=348±151 μmol·g−1 and β=−0.01044±0.0008 mol2·kJ−2 and ofE=6.9±0.3 kJ·mol−1. In all three isotherms correlation factor (γ) is ≥0.99. The influence of common anions and cations on the sorption has been investigated. Zn(II), Mg(II), oxalate, Pb(II), Mn(II) and tartrate reduce the sorption significantly whereas Fe(II) causes substantial increase in the sorption. It is essential that all ions causing a decrease in the sorption of Sn(II) must be absent from the sorptive solution otherwise low sorption yields would result.  相似文献   

7.
The sorption of anions H2PO4 , HPO4 2−, PO4 3−, [Fe(CN)6]3−, and [Fe(CN)6]4− from aqueous solutions on the surface of FeIII and ZrIV oxyhydroxide hydrogels freshly precipitated at pH 4–13 was studied. The region of sorbate concentrations was from 0.00025 to 0.06 mol L−1. The plots of the anion uptakes vs. their equilibrium concentrations are represented by isotherms of the first type, which are well described by the Langmuir equation if the quantity of the amount adsorbed is expressed as mol-site g−1. The maximum uptakes and constants of the Langmuir equation were calculated. The phosphate anions occupy the same number of sorption sites on the sorbents precipitated at different pH. The average specific content of sorption sites for the ferro- and zirconogels in the metastability period is independent of the pH of their precipitation, being 3.1·10−3 and 3.2·10−3 mol-site g−1, respectively. The [Fe(CN)6]3− and [Fe(CN)6]4− anions are sorbed only on the positively charged sites of the hydrogels and occupy not more than 2·10 mol-site g−1 in the studied interval of pH of precipitation. __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1736—1741, August, 2005.  相似文献   

8.
Crosslinked chitosan-bound FeC nanoparticles (CCBFeCNP) were prepared, and the adsorptive behavior of Cr(III) and Cr(VI) on CCBFeCNP were assessed. At pH 6.0–10.0, CCBFeCNP is selective towards Cr(III) but hardly selective towards Cr(VI). The retained Cr(III) is subsequently eluted with 0.5 mol L−1 HCl. Total chromium is determined after reduction of Cr(VI) to Cr(III) by ascorbic acid. A new method of flow injection using a micro-column packed with CCBFeCNP as solid phase extractant has been developed for speciation of Cr(III) and Cr(VI) in water samples, followed by flame atomic absorption spectrometry. The effects of pH, sample flow rate and volume, elution solution and interfering ions on the recoveries of Cr(III) were systematically investigated. Under optimum conditions, the adsorption capacity of CCBFeCNP for Cr(III) is 10.5 mg g−1 at pH 7.5. The procedure presented was applied to chromium speciation in water samples, and the results were satisfactory.  相似文献   

9.
p-Toluenesulfonylamide was immobilized on silica gel and on nm-sized silicium dioxide (SiO2). Their adsorption efficiency toward metal ions was investigated by the batch equilibrium technique. Although silica gel and nm-SiO2 have the same composition (silicon and oxygen), the difference in their sizes and surface structures results in distinct chemical activity and selectivity. At pH 4, the adsorption capacity of modified silica gel adsorbent was found to be 4.9, 5.0, 33.2, and 12.6 mg g−1 for Cr(III), Cu(II), Pb(II) and Zn(II), respectively. However, the adsorption capacity of nm-SiO2 adsorbent toward Cr(III) was 26.7 mg g−1 under ultrasonic dispersing. The potential application of p-toluenesulfonylamide-modified silica gel for simultaneous preconcentration of trace chromium, copper, lead and zinc from two standard reference materials and two food samples was performed with satisfactory results. Correspondence: Xijun Chang, Department of Chemistry, Lanzhou University, Lanzhou 730000, P.R. China  相似文献   

10.
The synthesis and evaluation of a molecularly imprinted polymer (MIP) used as a selective solid-phase extraction sorbent and coupled to high-performance liquid chromatography (HPLC) for the efficient determination of sulfamerazine (SMR) in pond water and three fishes are reported. The polymer was prepared using SMR as the template molecule, methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the crosslinking monomer in the presence of tetrahydrofuran as the solvent. The SMR-imprinted polymers and nonimprinted polymers were characterized by FT-IR and static adsorption experiments. The prepared SMR-imprinted material showed a high adsorption capacity, significant selectivity and good site accessibility. The maximum static adsorption capacities of the SMR-imprinted and nonimprinted materials for SMR were 108.8 and 79.6 mg g−1, respectively. The relative selectivity factor of this SMR-imprinted material was 1.6. Several parameters influencing the solid-phase extraction process were optimized. Finally, the SMR-imprinted polymers were used as the sorbent in solid-phase extraction to determine SMR in pond water and three fishes with satisfactory recovery. The average recoveries of the MIP-SPE method were 94.0% in ultrapure water and 95.8% in pond water. Relative standard deviations ranging from 0.3% to 5.2% in MIP were acquired. The results for the SMR concentrations in crucian, carp and wuchang fish were 66.0, 127.1 and 51.5 ng g−1, respectively. The RSDs (n = 5) were 3.51%, 0.53% and 5.08%, respectively. The limit of detection (LOD) for SMR was 1 ng g−1 and the limit of quantitation (LOQ) was 3.5 ng g−1.  相似文献   

11.
A series of new hybrid organo-inorganic sorbents with the 3-aminopropionate chelating group was synthesized. The synthesis includes the copolycondensation (sol—gel method) of tetraethoxysilane, 3-aminopropyltriethoxysilane, and several modifiers (MeSi(OEt)3, EtSi(OEt)3, Ti(OEt)4, AlONO3, ZrOCl2) followed by carboxyethylation with acrylic acid. The obtained chelating sorbents were characterized by elemental analysis, FT-IR and 1H NMR spectroscopy, and thermogravimetry. The N-carboxylated sorbents have a higher sorption capacity with respect to metal ions (0.5–0.9 mmol g−1, pH 6.3, NH4OAc, 20 °C) than the starting sorbents with the primary amino group (0.05–0.2 mmol g−1) and manifest high selectivity for copper(II) ion extraction. __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1783–1788, August, 2005.  相似文献   

12.
Citric acid was thermochemically esterified onto defatted cotton fibre to produce a carboxyl cotton chelator (CCC), which had been used for extraction of copper prior to its determination by flame atomic absorption spectrometry. The extraction of copper has been studied under both batch and column methods. Quantitative extraction of copper was achieved in the pH range 4–7. The time needed to extract each sample was less than 30 min by the batch method. The copper extraction capacity of CCC was found to be 22.7 mg g−1 at optimal pH value. The elution was quantitative with 1 mol L−1 hydrochloric acid. The feasible flow rate of copper-containing solution for quantitative extraction onto the column packed with CCC was 0.5–4.0 mL min−1, whereas for elution it was less than 1.5 mL min−1. A 100-fold extraction factor could be achieved under the optimal column conditions. The tolerance limits for common metal ions on the extraction of copper and the time of column reuse were investigated. The proposed method has been successfully applied for extraction and determination of copper in industrial wastewater and natural water samples.  相似文献   

13.
A new adsorbent is proposed for the solid-phase extraction of phenol and 1-naphthol from polluted water. The adsorbent (TX-SiO2) is an organosilica composite made from a bifunctional immobilized layer comprising a major fraction (91%) of hydrophilic diol groups and minor fraction (9%) of the amphiphilic long-chain nonionic surfactant Triton X-100 (polyoxyethylated isooctylphenol) (TX). Under static conditions phenol was quantitatively extracted onto TX-SiO2 in the form of a 4-nitrophenylazophenolate ion associate with cetyltrimethylammonium bromide. The capacity of TX-SiO2 for phenol is 2.4 mg g−1 with distribution coefficients up to 3.4 × 104 mL g−1; corresponding data for 1-naphthol are 1.5 mg g−1 and 3 × 103 mL g−1. The distribution coefficient does not change significantly for solution volumes of 0.025–0.5 L and adsorbent mass less than 0.03 g; 1–90 μg analyte can be easily eluted by 1–3 mL acetonitrile with an overall recovery of 98.2% and 78.3% for phenol and 1-naphthol, respectively. Linear correlation between acetonitrile solution absorbance (A 540) and phenol concentration (C) in water was found according to the equation A 540 = (6 ± 1) × 10−2 + (0.9 ± 0.1)C (μmol L−1) with a detection range from 1 × 10−8 mol L−1 (0.9 μL g−1) to 2 × 10−7 mol L−1 (19 μL g−1), a limit of quantification of 1 μL g−1 (preconcentration factor 125), correlation coefficient of 0.936, and relative standard deviation of 2.5%. A solid-phase colorimetric method was developed for quantitative determination of 1-naphthol on adsorbent phase using scanner technology and RGB numerical analysis. The detection limit of 1-naphthol with this method is 6 μL g−1 while the quantification limit is 20 μL g−1. A test system was developed for naked eye monitoring of 1-naphthol impurities in water. The proposed test kit allows one to observe changes in the adsorbent color when 1-naphthol concentration in water is 0.08–3.2 mL g−1.  相似文献   

14.
Several sorbents were prepared by precipitating zirconium phosphate on activated carbon support material. The main parameters of the chemical procedure were optimized in order to obtain the highest decontamination factors which can be achieved in the case of Cs+, Sr2+ and I ions. For the characterization of the sorbents, sorption isotherms and capacity data were determined. The reproducibility of the preparation is about 10%.  相似文献   

15.
 Two new chelating sorbents for metal ions were prepared by the impregnation of chemically modified silicas LiChroprep RP-8 and RP-18 with ion pairs composed of the cation of Aliquat 336 and the anion of Calcon. The sorbents were compared with an analogous sorbent with a plain silica carrier containing the same ion pairs. A hypothesis for binding this ion pair by the surfaces of the applied carriers was presented. A higher stability of the two sorbents in comparison with that of the plain silica chelating sorbent was demonstrated. The sorbents obtained were applied for chromatographic separations of some chosen mixtures of some metal ions and for additional purification of aqueous solutions of alkali metals from trace amounts of heavy metals. The multiple use of the sorbents based on RP-8 and RP-18 in sorption–desorption processes of metal ions without deterioration of their sorption capacities was demonstrated. Received March 8, 2000. Revision March 5, 2001.  相似文献   

16.
The present study characterises sorption of two pesticides, namely, paraquat (PQ) and 2,4-dichlorophenoxyacetic acid (2,4-D) by an Oscillatoria sp.-dominated cyanobacterial mat. Sorption of PQ onto the test mat was not significantly affected by the pH of the solution within the pH range 2–7. However, 2,4-D sorption was strongly influenced by the solution pH and was maximum at pH 2. Whereas PQ sorption increased with increase in temperature, 2,4-D sorption showed an opposite trend. The sorption of PQ and 2,4-D achieved equilibrium within 1 h of incubation, independent of concentration of pesticide and mat biomass in the solution. The pseudo-second-order kinetic model better defined PQ sorption than the pseudo-first-order model, whereas 2,4-D sorption was well defined by both the models. Sorption isotherms of both the pesticides showed L-type curve. Freundlich model more precisely defined PQ sorption than Langmuir model, thereby suggesting heterogeneous distribution of PQ binding sites onto the biomass surface. However, the Langmuir model more correctly defined 2,4-D sorption, thus, indicating homogeneous distribution of 2,4-D binding sites onto the biomass surface. The test biomass is a good sorbent for the removal of PQ because it could, independent of pH of the solution, sorb substantial amount of PQ (q max = 0.13 mmol g−1).  相似文献   

17.
Sorption of TcVII from solutions of various compositions with new sorbents prepared by the noncovalent immobilization of (thia)calix[4]arenes on the Amberlite XAD-7™ support was studied. The sorbents studied efficiently extract technetium(vii) from both acidic and alkaline media. The sorption capacity of the sorbent with thiacalix[4]arene groups is superior to that of the sorbents with calix[4]arene groups and several times higher than that of the sorbents previously proposed for the sorption of TcVII. Technetium(vii) is sorbed by this sorbent as 1: 1 and 1: 2 thiacalix[4]arene—NH4TcO4 and 1: 1 and 1: 2 thiacalix[4]arene—NaTcO4 complexes.  相似文献   

18.
Olive cake as low-cost abundantly available sorbent has been characterized by N2 at 77 K adsorption, porosity analysis, elemental analysis and IR spectra and has been used for preconcentrating of uranium(VI) and thorium(IV) ions prior to their determination spectrophotometrically. The optimum pH values for quantitative sorption of U(VI) and Th(IV) are 4–7 and 3–7, respectively. The enrichment factor for the preconcentration of U(VI) and Th(IV) were found to be 125 and 75 in the given order. The sorption capacity of olive cake is in the range of 2,260–15,000 μg g−1 for Th(IV) and in the range of 1,090–17,000 μg g−1 for U(VI) at pH 3–7. The sorbent exhibits good reusability and the uptake and stripping of the studied ions were fairly rapid. The elution of U(VI) and Th(IV) was performed with 0.3–1 M HCl/1–2 M HNO3 and 0.3–0.8 M HCl/1 M HNO3, respectively. The precision of the method was 1.8 RSD% for U(VI) and 2.5 RSD% for Th(IV) in a concentration of 1.00 μg mL−1 for 10 replicate analysis. The influence of some electrolytes and cations as interferents was discussed. Separation of U(VI) and Th(IV) from other metal ions in synthetic solution was achieved.  相似文献   

19.
 A new resin has been synthesized by functionalisation of polystyrene-divinylbenzene (8%) with imidazole 4,5-dicarboxylic acid through –N=N– bonding. The resulting resin has been characterised by elemental analysis, thermogravimetric analysis, infrared spectroscopy, hydrogen ion capacity and metal ion capacity. The speciation study of vanadium has been studied by using this resin and the maximum exchange capacity was found to be 0.45 mmol g−1 for V4+ and that for V5+ was 1.57 mmol g−1 at pH 3 for both. The eluents malonic acid and sodium hydroxide have been used for the selective separation of vanadium(IV) and vanadium(V) species respectively. The effects of diverse ions on the sorption and recovery of each species have been studied. Finally, the developed method has been applied for the speciation and determination of these two species in natural water samples. Correspondence: Department of Chemistry, The University of Burdwan, Burdwan, India. e-mail: akdas100@yahoo.com Received December 20, 2001; accepted October 11, 2002  相似文献   

20.
 Column solid-phase extraction using TiO2 (anatase) as a solid sorbent was applied to preconcentrate traces of Cd, Co, Cu, Fe, Mn, Ni and Pb from AR grade alkali salts prior to their measurements by atomic absorption spectrometry (AAS). Multi-element preconcentration was achieved from NaCl, KCl, KNO3, NaNO3, CH3COONa, NaHCO3 and Na2CO3 solutions, whereas the sorption of trace elements from phosphates and sulfates is not quantitative. Optimal conditions (recoveries of the analytes >95%) for solid-phase co-extraction of the most common heavy metal ions are proposed. The conditions for quantitative and reproducible elution and subsequent AAS are established. A method of determination of trace elements in different salts is proposed. It is characterized by precision, reproducibility and a high preconcentration factor. The solid-phase extraction by TiO2, combined with ETAAS allows the determination of 0.1 ng g-1 Cd, 2 ng g-1 Co, 1 ng g-1 Cu and Ni, 0.5 ng g-1 Mn and 0.4 ng g-1 Pb. Received: 1 April 1996/Revised: 24 June 1996/Accepted: 9 July 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号