首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The Zn-Zn bonded compound [(η(5)-Cp*)(2)Zn(2)] was investigated as catalyst for the inter- and intramolecular hydroamination reaction. High reaction rates under mild conditions were observed. This is the first application of a Zn-Zn bonded compound as catalyst.  相似文献   

2.
The syntheses, structures, spectroscopy, and electrochemistry for six Ir(III) and Rh(III) mixed sandwich mononuclear complexes involving tridentate macrocycles and pentamethylcyclopentadienide (Cp*) are reported. The complexes are readily prepared by direct ligand substitution reactions from the dichloro bridged binuclear complexes, [{M(Cp*)(Cl)2}2]. All complexes have the general formula [M(L)(Cp*)]X2 (M = Ir(III) or Rh(III), L = macrocycle, or Cl) and exhibit a distorted octahedral structure involving three donor atoms from the macrocycle and the facially coordinating carbocyclic Cp* ligand. The complex cations include: [Rh(η5 -Cp*)(9S3)]2+ (1), [Rh(η5-Cp*)(9N3)]2+ (2), [Rh(η5-Cp*)(10S3)]2+ (3), [Ir(η5-Cp*)(9S3)]2+ (4), [Ir(η5-Cp*)(9N3)]2+ (5), and [Ir(η5-Cp*)(10S3)]2+ (6), where 9S3 = 1,4,7-trithiacyclononane, 9N3 = 1,4,7-triazacyclononane, and 10S3 = 1,4,7-trithiacyclodecane. The structures for all six complexes are supported by 1H and 13C{1H} NMR spectroscopy, and five complexes are also characterized by single-crystal X-ray crystallography (complexes 1-5). The 1H NMR splittings between the two sets of methylene protons for both the Rh(III) and Ir(III) 9S3 complexes are much larger (0.4 vs. 0.2 ppm) compared to those in the two 9N3 complexes. Similarly, the 13C{1H} NMR spectra in all four thioether complexes show that the ring carbons in the Cp* ligand are shifted by over 10 ppm downfield compared to the azacrown complexes. The electrochemistry of the complexes is surprisingly invariable and is dominated by a single irreversible metal-centered reduction near −1.2 V vs. Fc/Fc+.  相似文献   

3.
The reactions of the phosphinidene-bridged complex [Mo(2)Cp(2)(μ-PH)(η(6)-HMes*)(CO)(2)] (1), the arylphosphinidene complexes [Mo(2)Cp(2)(μ-κ(1):κ(1),η(6)-PMes*)(CO)(2)] (2), [Mo(2)Cp(2)(μ-κ(1):κ(1),η(4)-PMes*)(CO)(3)] (3), [Mo(2)Cp(2)(μ-κ(1):κ(1),η(4)-PMes*)(CO)(2)(CN(t)Bu)] (4), and the cyclopentadienylidene-phosphinidene complex [Mo(2)Cp(μ-κ(1):κ(1),η(5)-PC(5)H(4))(η(6)-HMes*)(CO)(2)] (5) toward different sources of chalcogen atoms were investigated (Mes* = 2,4,6-C(6)H(2)(t)Bu(3); Cp = η(5)-C(5)H(5)). The bare elements were appropriate sources in all cases except for oxygen, in which case dimethyldioxirane gave the best results. Complex 1 reacted with the mentioned chalcogen sources at low temperature, to give the corresponding chalcogenophosphinidene derivatives [Mo(2)Cp(2){μ-κ(2)(P,Z):κ(1)(P)-ZPH}(η(6)-HMes*)(CO)(2)] (Z = O, S, Se, Te; P-Se = 2.199(2) ?). The arylphosphinidene complex 2 was the least reactive substrate and gave only chalcogenophosphinidene derivatives [Mo(2)Cp(2)(μ-κ(2)(P,Z):κ(1)(P),η(6)-ZPMes*)(CO)(2)] for Z = O and S (P-O = 1.565(2) ?), along with small amounts of the dithiophosphorane complex [Mo(2)Cp(2)(μ-κ(2)(P,S):κ(1)(S'),η(6)-S(2)PMes*)(CO)(2)], in the reaction with sulfur. The η(4)-complexes 3 and 4 reacted with sulfur and gray selenium to give the corresponding derivatives [Mo(2)Cp(2)(μ-κ(2)(P,Z):κ(1)(P),η(4)-ZPMes*)(CO)(2)L] (L = CO, CN(t)Bu), obtained respectively as syn (Z = Se; P-Se = 2.190(1) ? for L = CO) or a mixture of syn and anti isomers (Z = S; P-S = 2.034(1)-2.043(1) ?), with these diastereoisomers differing in the relative positioning of the chalcogen atom and the terminal ligand at the metallocene fragment, relative to the Mo(2)P plane. The cyclopentadienylidene compound 5 reacted with all chalcogens, and gave with good yields the chalcogenophosphinidene derivatives [Mo(2)Cp(μ-κ(2)(P,Z):κ(1)(P),η(5)-ZPC(5)H(4))(η(6)-HMes*)(CO)(2)] (Z = S, Se, Te), these displaying in solution equilibrium mixtures of the corresponding cis and trans isomers differing in the relative positioning of the cyclopentadienylic rings with respect to the MoPZ plane in each case. The sulfur derivative reacted with excess sulfur to give the dithiophosphorane complex [Mo(2)Cp(μ-κ(2)(P,S):κ(1)(S'),η(5)-S(2)PC(5)H(4))(η(6)-HMes*)(CO)(2)] (P-S = 2.023(4) and 2.027(4) ?). The structural and spectroscopic data for all chalcogenophosphinidene complexes suggested the presence of a significant π(P-Z) bonding interaction within the corresponding MoPZ rings, also supported by Density Functional Theory calculations on the thiophosphinidene complex syn-[Mo(2)Cp(2)(μ-κ(2)(P,S):κ(1)(P),η(4)-SPMes*)(CO)(3)].  相似文献   

4.
The synthesis, structural characterization, and bonding situation analysis of a novel, all-zinc, hepta-coordinated palladium complex [Pd(ZnCp*)(4)(ZnMe)(2){Zn(tmeda)}] (1) is reported. The reaction of the substitution labile d(10) metal starting complex [Pd(CH(3))(2)(tmeda)] (tmeda = N,N,N',N'-tetramethyl-ethane-1,2-diamine) with stoichiometric amounts of [Zn(2)Cp*(2)] (Cp* = pentamethylcyclopentadienyl) results in the formation of [Pd(ZnCp*)(4)(ZnMe)(2){Zn(tmeda)}] (1) in 35% yield. Compound 1 has been fully characterized by single-crystal X-ray diffraction, (1)H and (13)C NMR spectroscopy, IR spectroscopy, and liquid injection field desorption ionization mass spectrometry. It consists of an unusual [PdZn(7)] metal core and exhibits a terminal {Zn(tmeda)} unit. The bonding situation of 1 with respect to the properties of the three different types of Zn ligands Zn(R,L) (R = CH(3), Cp*; L = tmeda) bonded to the Pd center was studied by density functional theory quantum chemical calculations. The results of energy decomposition and atoms in molecules analysis clearly point out significant differences according to R vs L. While Zn(CH(3)) and ZnCp* can be viewed as 1e donor Zn(I) ligands, {Zn(tmeda)} is best described as a strong 2e Zn(0) donor ligand. Thus, the 18 valence electron complex 1 nicely fits to the family of metal-rich molecules of the general formula [M(ZnR)(a)(GaR)(b)] (a + 2b = n ≥ 8; M = Mo, Ru, Rh; Ni, Pd, Pt; R = Me, Et, Cp*).  相似文献   

5.
Treatment of [Ce(Cp*)(2)I] or [U(Cp*)(2)I(py)] with 1 mol equivalent of bipy (Cp*=C(5)Me(5); bipy=2,2'-bipyridine) in THF gave the adducts [M(Cp*)(2)I(bipy)] (M=Ce (1 a), M=U (1 b)), which were transformed into [M(Cp*)(2)(bipy)] (M=Ce (2 a), M=U (2 b)) by Na(Hg) reduction. The crystal structures of 1 a and 1 b show, by comparing the U-N and Ce-N distances and the variations in the C-C and C-N bond lengths within the bidentate ligand, that the extent of donation of electron density into the LUMO of bipy is more important in the actinide than in the lanthanide compound. Reaction of [Ce(Cp*)(2)I] or [U(Cp*)(2)I(py)] with 1 mol equivalent of terpy (terpy=2,2':6',2'-terpyridine) in THF afforded the adducts [M(Cp*)(2)(terpy)]I (M=Ce (3 a), M=U (3 b)), which were reduced to the neutral complexes [M(Cp*)(2)(terpy)] (M=Ce (4 a), M=U (4 b)) by sodium amalgam. The complexes [M(Cp*)(2)(terpy)][M(Cp*)(2)I(2)] (M=Ce (5 a), M=U (5 b)) were prepared from a 2:1 mixture of [M(Cp*)(2)I] and terpy. The rapid and reversible electron-transfer reactions between 3 and 4 in solution were revealed by (1)H NMR spectroscopy. The spectrum of 5 b is identical to that of the 1:1 mixture of [U(Cp*)(2)I(py)] and 3 b, or [U(Cp*)(2)I(2)] and 4 b. The magnetic data for 3 and 4 are consistent with trivalent cerium and uranium species, with the formulation [M(III)(Cp*)(2)(terpy(*-))] for 4 a and 4 b, in which spins on the individual units are uncoupled at 300 K and antiferromagnetically coupled at low temperature. Comparison of the crystal structures of 3 b, 4 b, and 5 b with those of 3 a and the previously reported ytterbium complex [Yb(Cp*)(2)(terpy)] shows that the U-N distances are much shorter, by 0.2 A, than those expected from a purely ionic bonding model. This difference should reflect the presence of stronger electron transfer between the metal and the terpy ligand in the actinide compounds. This feature is also supported by the small but systematic structural variations within the terdentate ligands, which strongly suggest that the LUMO of terpy is more filled in the actinide than in the lanthanide complexes and that the canonical forms [U(IV)(Cp*)(2)(terpy(*-))]I and [U(IV)(Cp*)(2)(terpy(2-))] contribute significantly to the true structures of 3 b and 4 b, respectively. This assumption was confirmed by the reactions of complexes 3 and 4 with the H(.) and H(+) donor reagents Ph(3)SnH and NEt(3)HBPh(4), which led to clear differentiation of the cerium and uranium complexes. No reaction was observed between 3 a and Ph(3)SnH, while the uranium counterpart 3 b was transformed in pyridine into the uranium(IV) compound [U(Cp*)(2){NC(5)H(4)(py)(2)}]I (6), where NC(5)H(4)(py)(2) is the 2,6-dipyridyl(hydro-4-pyridyl) ligand. Complex 6 was further hydrogenated to [U(Cp*)(2){NC(5)H(8)(py)(2)}]I (7) by an excess of Ph(3)SnH in refluxing pyridine. Treatment of 4 a with NEt(3)HBPh(4) led to oxidation of the terpy(*-) ligand and formation of [Ce(Cp*)(2)(terpy)]BPh(4), whereas similar reaction with 4 b afforded [U(Cp*)(2){NC(5)H(4)(py)(2)}]BPh(4) (6'). The crystal structures of 6, 6' and 7 were determined.  相似文献   

6.
Degradation of white phosphorus (P(4)) in the coordination sphere of transition metals is commonly divided into two major pathways depending on the P(x) ligands obtained. Consecutive metal-assisted P-P bond cleavage of four bonds of the P(4) tetrahedron leads to complexes featuring two P(2) ligands (symmetric cleavage) or one P(3) and one P(1) ligand (asymmetric cleavage). A systematic investigation of the degradation of white phosphorus P(4) to coordinated μ,η(2:2)-bridging diphosphorus ligands in the coordination sphere of cobalt is presented herein as well as isolation of each of the decisive intermediates on the reaction pathway. The olefin complex [Cp*Co((i)Pr(2)Im)(η(2)-C(2)H(4))], 1 (Cp* = η(5)-C(5)Me(5), (i)Pr(2)Im = 1,3-di-isopropylimidazolin-2-ylidene), reacts with P(4) to give [Cp*Co((i)Pr(2)Im)(η(2)-P(4))], 2, the insertion product of [Cp*Co((i)Pr(2)Im)] into one of the P-P bonds. Addition of a further equivalent of the Co(I) complex [Cp*Co((i)Pr(2)Im)(η(2)-C(2)H(4))], 1, induces cleavage of a second P-P bond to yield the dinuclear complex [{Cp*Co((i)Pr(2)Im)}(2)(μ,η(2:2)-P(4))], 3, in which a kinked cyclo-P(4)(4-) ligand bridges two cobalt atoms. Consecutive dissociation of the N-heterocyclic carbene with concomitant rearrangement of the cyclo-P(4) ligand and P-P dissociation leads to complexes [Cp*Co(μ,η(4:2)-P(4))Co((i)Pr(2)Im)Cp*], 4, featuring a P(4) chain, and [{Cp*Co(μ,η(2:2)-P(2))}(2)], 5, in which two isolated P(2)(2-) ligands bridge two [Cp*Co] fragments. Each of these reactions is quantitative if performed on an NMR scale, and each compound can be isolated in high yields and large quantities.  相似文献   

7.
The bioconjugation of organometallic complexes with peptides has proven to be a novel approach for drug discovery. We report the facile and chemoselective reaction of tyrosine-containing G-protein-coupled receptor (GPCR) peptides with [Cp*Rh(H(2)O)(3)](OTf)(2), in water, at room temperature, and at pH 5-6. We have focused on three important GPCR peptides; namely, [Tyr(1)]-leu-enkephalin, [Tyr(4)]-neurotensin(8-13), and [Tyr(3)]-octreotide, each of which has a different position for the tyrosine residue, together with competing functionalities. Importantly, all other functional groups present, i.e., amino, carboxyl, disulfide, phenyl, and indole, were not prominent sites of reactivity by the Cp*Rh tris aqua complex. Furthermore, the influence of the Cp*Rh moiety on the structure of [Tyr(3)]-octreotide was characterized by 2D NMR, resulting in the first representative structure of an organometallic-peptide complex. The biological consequences of these Cp*Rh-peptide complexes, with respect to GPCR binding and growth inhibition of MCF7 and HT29 cancer cells, will be presented for [(η(6)-Cp*Rh-Tyr(1))-leu-enkephalin](OTf)(2) and [(η(6)-Cp*Rh-Tyr(3))-octreotide](OTf)(2).  相似文献   

8.
Treatment of [Mo(N(2))(PMe(3))(5)] with two equivalents GaCp* (Cp* = η(5)-C(5)(CH(3))(5)) leads to the formation of cis-[Mo(GaCp*)(2)(PMe(3))(4)] (1), while AlCp* did not react with this precursor. In addition, [Ni(GaCp*)(2)(PPh(3))(2)] (2a), [Ni(AlCp*)(2)(PPh(3))(2)] (2b), [Ni(GaCp*)(2)(PCy(3))(2)] (3a), [Ni(GaCp*)(2)(PMe(3))(2)] (3b), [Ni(GaCp*)(3)(PCy(3))] (4) and [Ni(GaCp*)(PMe(3))(3)] (5) have been prepared in high yields by a direct synthesis from [Ni(COD)(2)] and stoichiometric amounts of the ligands PR(3) and ECp* (E = Al, Ga), respectively. All compounds have been fully characterized by (1)H, (13)C, and (31)P NMR spectroscopy, elemental analysis and single crystal X-ray diffraction studies.  相似文献   

9.
The reactions of heteroleptic GaCp*/CO containing transition metal complexes of iron and cobalt, namely [(CO)(3)M(μ(2)-GaCp*)(m)M(CO)(3)] (Cp* = pentamethylcyclopentadienyl; M = Fe, m = 3; M = Co, m = 2) and [Fe(CO)(4)(GaCp*)], with ZnMe(2) in toluene and the presence of a coordinating co-solvent were investigated. The reaction of the iron complex [Fe(CO)(4)(GaCp*)] with ZnMe(2) in presence of tetrahydrofurane (thf) leads to the dimeric compound [(CO)(4)Fe{μ(2)-Zn(thf)(2)}(2)Fe(CO)(4)] (1). Reaction of [(CO)(3)Fe(μ(2)-GaCp*(3))Fe(CO)(3)] with ZnMe(2) and stoichiometric amounts of thf leads to the formation of [(CO)(3)Fe{μ(2)-Zn(thf)(2)}(2)(μ(2)-ZnMe)(2)Fe(CO)(3)] (2) containing {Zn(thf)(2)} as well as ZnMe ligands. Using pyridine (py) instead of thf leads to [(CO)(3)Fe{μ(2)-Zn(py)(2)}(3)Fe(CO)(3)] (3) via replacement of all GaCp* ligands by three{Zn(py)(2)} groups. In contrast, reaction of [(CO)(3)Co(μ(2)-GaCp*)(2)Co(CO)(3)] with ZnMe(2) in the presence of py or thf leads in both cases to the formation of [(CO)(3)Co{μ(2)-ZnL(2)}(μ(2)-ZnCp*)(2)Co(CO)(3)] (L = py (4), thf (5)) via replacement of GaCp* with {Zn(L)(2)} units as well as Cp* transfer from the gallium to the zinc centre. All compounds were characterised by NMR spectroscopy, IR spectroscopy, single crystal X-ray diffraction and elemental analysis.  相似文献   

10.
Attempts to prepare mixed-ligand zinc-zinc-bonded compounds that contain bulky C(5)Me(5) and terphenyl groups, [Zn(2)(C(5)Me(5))(Ar')], lead to disproportionation. The resulting half-sandwich Zn(II) complexes [(η(5)-C(5)Me(5))ZnAr'] (Ar' = 2,6-(2,6-(i)Pr(2)C(6)H(3))(2)-C(6)H(3), 2; 2,6-(2,6-Me(2)C(6)H(3))(2)-C(6)H(3), 3) can also be obtained from the reaction of [Zn(C(5)Me(5))(2)] with the corresponding LiAr'. In the presence of pyr-py (4-pyrrolidinopyridine) or DBU (1,8-diazabicyclo[5.4.0]undec-7-ene), [Zn(2)(η(5)-C(5)Me(5))(2)] reacts with C(5)Me(5)OH to afford the tetrametallic complexes [Zn(2)(η(5)-C(5)Me(5))L(μ-OC(5)Me(5))](2) (L = pyr-py, 6; DBU, 8), respectively. The bulkier terphenyloxide Ar(Mes)O(-) group (Ar(Mes) = 2,6-(2,4,6-Me(3)C(6)H(2))(2)-C(6)H(3)) gives instead the dimetallic compound [Zn(2)(η(5)-C(5)Me(5))(OAr(Mes))(pyr-py)(2)], 7, that features a terminal Zn-OAr(Mes) bond. DFT calculations on models of 6-8 and also on the Zn-Zn-bonded complexes [Zn(2)(η(5)-C(5)H(5))(OC(5)H(5))(py)(2)] and [(η(5)-C(5)H(5))ZnZn(py)(3)](+) have been performed and reveal the nonsymmetric nature of the Zn-Zn bond with lower charge and higher participation of the s orbital of the zinc atom coordinated to the cyclopentadienyl ligand with respect to the metal within the pseudo-ZnL(3) fragment. Cyclic voltammetric studies on [Zn(2)(η(5)-C(5)Me(5))(2)] have been also carried out and the results compared with the behavior of [Zn(C(5)Me(5))(2)] and related magnesium and calcium metallocenes.  相似文献   

11.
Photochemical decarbonylation of [Mo2Cp2(mu-PR*)(CO)4] (Cp = eta5-C5H5; R* = 2,4,6-C6H2tBu3) gives [Mo2Cp2(mu-kappa1:kappa1,eta6-PR*)(CO)2], which shows the first example of a remarkable 10-electron donor arylphosphinidene ligand which bridges two Mo atoms through its phosphorus atom while being pi-bonded to one Mo center through the six carbon atoms of the aryl ring. This causes a severe pyramidal distortion of the P-bound C atom. The complex adds CO to give [Mo2Cp2(mu-kappa1:kappa1,eta4-PR*)(CO)3], which has an 8-electron donor PR* ligand, and then the parent complex [Mo2Cp2(mu-PR*)(CO)4]. Protonation of [Mo2Cp2(mu-kappa1:kappa1,eta6-PR*)(CO)2] gives the hydride [Mo2Cp2(H)(mu-kappa1:kappa1,eta6-PR*)(CO)2]+, which undergoes P-C bond cleavage and hydride migration, affording the phosphido cation [Mo2Cp2(mu-P)(eta6-R*H)(CO)2]+.  相似文献   

12.
The reactions of molybdenum(0) and rhodium(I) olefin containing starting materials with the carbenoid group 13 metal ligator ligand GaR (R = Cp*, DDP; Cp* = pentamethylcyclopentadienyl, DDP = HC(CMeNC(6)H(3)-2,6-(i)Pr(2))(2)) were investigated and compared. Treatment of [Mo(η(4)-butadiene)(3)] with GaCp* under hydrogen atmosphere at 100 °C yields the homoleptic, hexa coordinated, and sterically crowded complex [Mo(GaCp*)(6)] (1) in good yields ≥50%. Compound 1 exhibits an unusual and high coordinated octahedral [MoGa(6)] core. Similarly, [Rh(GaCp*)(5)][CF(3)SO(3)] (2) and [Rh(GaCp*)(5)][BAr(F)] (3) (BAr(F) = B{C(6)H(3)(CF(3))(2)}(4)) are prepared by the reaction of GaCp* with the rhodium(I) compound [Rh(coe)(2)(CF(3)SO(3))](2) (coe = cyclooctene) and subsequent anion exchange in case of 3. Compound 2 features a trigonal bipyramidal [RhGa(5)] unit. In contrast, reaction of excess Ga(DDP) with [Rh(coe)(2)(CF(3)SO(3))](2) does not result in a high coordinated homoleptic complex but instead yields [(coe)(toluene)Rh{Ga(DDP)}(CF(3)SO(3))] (4). The common feature of 2 and 4 in the solid state structure is the presence of short CF(3)SO(2)O···Ga contacts involving the GaCp* or rather the Ga(DDP) ligand. Compounds 1, 2, and 4 have been fully characterized by single crystal X-ray diffraction, variable temperature (1)H and (13)C NMR spectroscopy, IR spectroscopy, mass spectrometry, as well as elemental analysis.  相似文献   

13.
The synthesis and structural characterization of the novel homoleptic cluster complexes [Pd2(GaCp*)2(mu2-GaCp*)3] (1c), [Pd3(GaCp*)4(mu2-GaCp*)4] (2b) and [Pd3(AlCp*)2(mu2-AlCp*)2(mu3-AlCp*)2] (3) (Cp*=C5Me5) are presented. Furthermore, ligand exchange reactions of these cluster complexes are explored. In contrast to the electronically and sterically saturated complexes [M(ECp*)4] (M=Ni, Pd, Pt), the new unsaturated analogues [M(a)(ER)b] (E=Al, Ga, In) react with a variety of typical ligands (Cp*Al, CO, phosphines, isonitriles) to give new di- and tri-substituted compounds like [Pt2(GaCp*)2(mu2-AlCp*)3] (1d), [PdPt(GaCp*)(PPh3)(mu2-GaCp*)3] (4b), or [Pd3(PPh3)3(mu2-InCp*)(mu3-InCp*)2] (8). The trends of the reactivity of [M(a)(ER)b] as well as their fluxional behavior in solution has been elucidated by NMR spectroscopy, resulting in a mechanistic rationale for the ligand exchange reactions as well as the fluxional processes.  相似文献   

14.
The late-transition-metal parent amido compound [Ir(Cp*)(PMe3)(Ph)(NH2)] (2) has been synthesized by deprotonation of the corresponding ammine complex [Ir(Cp*)(PMe3)(Ph)(NH3)][OTf] (6) with KN(SiMe3)2. An X-ray structure determination has ascertained its monomeric nature. Proton-transfer studies indicate that 2 can successfully deprotonate p-nitrophenylacetonitrile, aniline, and phenol. Crystallographic analysis has revealed that the ion pair [Ir(Cp*)(PMe3)(Ph)(NH3)][OPh] (8) exists as a hydrogen-bonded dimer in the solid state. Reactions of 2 with isocyanates and carbodiimides lead to overall insertion of the heterocumulenes into the N--H bond of the Ir-bonded amido group, demonstrating the ability of 2 to act as an efficient nucleophile. Intriguing reactivity is observed when amide 2 reacts with CO or 2,6-dimethylphenyl isocyanide. eta4-Tetramethylfulvene complexes [Ir(eta4-C5Me4CH2)(PMe3)(Ph)(L)] (L=CO (15), CNC6H3-2,6-(CH3)2 (16)) are formed in solution through displacement of the amido group by the incoming ligand followed by deprotonation of a methyl group on the Cp* ring and liberation of ammonia. Conclusive evidence for the presence of the Ir-bonded eta4-tetramethylfulvene moiety in the solid state has been provided by an X-ray diffraction study of complex 16.  相似文献   

15.
16.
A density functional theoretical (DFT) study (B3LYP) has been carried out on 20 organometallic complexes containing η(5)- and/or η(3)-coordinated cyclopentadienyl anions (Cp(-)) and 2,2'-bipyridine (bpy) ligand(s) at varying oxidation levels, i.e., as the neutral ligand (bpy(0)), as the π-radical monoanion (bpy(?-))(-), or as the diamagnetic dianion (bpy(2-))(2-). The molecular and electronic structures of these species in their ground states and, in some cases, their first excited states have been calculated using broken-symmetry methodology. The results are compared with experimental structural and spectroscopic data (where available) in order to validate the DFT computational approach. The following electron-transfer series and complexes have been studied: [(Cp)(2)V(bpy)](0,+,2+) (1-3), [(Cp)(2)Ti(bpy)](-,0,+,2+) (4-7), [(Cp)(2)Ti(biquinoline)](0,+) (8 and 9), [(Cp*)(2)Ti(bpy)](0) (10) (Cp* = pentamethylcyclopentadienyl anion), [Cp*Co(bpy)](0,+) (11 and 12), [Cp*Co(bpy)Cl](+,0) (13 and 14), [Fe(toluene)(bpy)](0) (15), [Cp*Ru(bpy)](-) (16), [(Cp)(2)Zr(bpy)](0) (17), and [Mn(CO)(3)(bpy)](-) (18). In order to test the predictive power of our computations, we have also calculated the molecular and electronic structures of two complexes, A and B, namely, the diamagnetic dimer [Cp*Sc(bpy)(μ-Cl)](2) (A) and the paramagnetic (at 25 °C) mononuclear species [(η(5)-C(5)H(4)(CH(2))(2)N(CH(3))(2))Sc((m)bpy)(2)] (B). The crystallographically observed intramolecular π-π interaction of two N,N'-coordinated π-radical anions in A leading to an S = 0 ground state is reliably reproduced. Similarly, the small singlet-triplet gap of ~600 cm(-1) between two antiferromagnetically coupled (bpy(?-))(-) ligands in B, two ferromagnetically coupled radical anions in the triplet excited state of B, and the structures of A and B is reproduced. Therefore, we are confident that we can present computationally obtained, detailed electronic structures for complexes 1-18. We show that N,N'-coordinated neutral bpy(0) ligands behave as very weak π acceptors (if at all), whereas the (bpy(2-))(2-) dianions are strong π-donor ligands.  相似文献   

17.
The ion-contact complexes [{(eta(5)-Cp)(2)Mn(eta(2):eta(5)-Cp)K}(3)]x0.5 THF (1x0.5 THF) and [{(eta(2)-Cp)(2)(eta(2);eta(5)-MeCp)MnK(thf)}]x2 THF (2x2 THF) and ion-separated complexes [Mg(thf)(6)][(eta(2)-Cp)(3)Mn](2) (3), [Mg(thf)(6)][(eta(2)-Cp)(eta(2)-MeCp)(2)Mn)](2)x0.5 THF (4x0.5 THF), [Mg(thf)(6)][(eta(2)-MeCp)(3)Mn)](2)x0.5 THF (5x0.5 THF) and [Li([12]crown-4)](5)[(eta-Cp)(3)Mn](5) (6) (Cp=C(5)H(5), CpMe=C(5)H(4)CH(3)), have been prepared and structurally characterised. The effects of varying the Cp and CpMe ligands in complexes 1-5 have been probed by variable-temperature magnetic susceptibility measurements and EPR spectroscopic studies.  相似文献   

18.
Protonation of [Mo2Cp2(mu-H)(mu-PHR*)(CO)4] (Cp = eta5-C5H5, R* = 2,4,6-C6H2tBu3) with HBF4.OEt2 gives the hydridophosphinidene complex [Mo2Cp2(mu-H)(mu-PR*)(CO)4]BF4, which is easily deprotonated with H2O to give the known phosphinidene complex [Mo2Cp2(mu-PR*)(CO)4] in 95% yield. Reaction of the latter with I2 gives the unsaturated phosphinidene complex [Mo2Cp2I2(mu-PR*)(CO)2], which exhibits an intermetallic distance of 2.960(2) A. Irradiation of solutions of [Mo2Cp2(mu-PR*)(CO)4] with UV light gives a mixture of the triply bonded [Mo2Cp2(mu-PR*)(mu-CO)2] and the hydridophosphido derivative [Mo2Cp2(mu-H){mu-P(CH2CMe2)C6H2tBu2}(CO)4] as major species. The latter complex results from an intramolecular C-H bond cleavage from a tBu group and has been characterized by spectroscopy and an X-ray study. Irradiation in the presence of HCC(p-tol) results in the insertion of the alkyne into the Mo-P bond to give [Mo2Cp2{mu-eta1:eta2,kappa-C(p-tol)CHPR*}(CO)4] structurally characterized through an X-ray study.  相似文献   

19.
The first chromium pentalene complexes have been characterized; in these the ligand displays a hitherto-unknown bonding mode whereby a dimeric [Cr(Cp*)](2)(mu-OR) unit is bound (mu:eta(2):eta(2))- to one face, and Cp*Cr is bound eta(5)- to the other. The magnetic properties of these compounds can be understood as the superposition of those of a chromocene and an antiferromagnetically coupled Cr[bond]Cr bonded unit.  相似文献   

20.
Reduction of [Cp*Fe(η5‐As5)] with [Cp′′2Sm(thf)] (Cp′′=η5‐1,3‐(tBu)2C5H3) under various conditions led to [(Cp′′2Sm)(μ,η44‐As4)(Cp*Fe)] and [(Cp′′2Sm)2As7(Cp*Fe)]. Both compounds are the first polyarsenides of the rare‐earth metals. [(Cp′′2Sm)(μ,η44‐As4)(Cp*Fe)] is also the first d/f‐triple decker sandwich complex with a purely inorganic planar middle deck. The central As42? unit is isolobal with the 6π‐aromatic cyclobutadiene dianion (CH)42?. [(Cp′′2Sm)2As7(Cp*Fe)] contains an As73? cage, which has a norbornadiene‐like structure with two short As?As bonds in the scaffold. DFT calculations confirm all the structural observations. The As?As bond order inside the cyclo As4 ligand in [(Cp′′2Sm)(μ,η44‐As4)(Cp*Fe)] was estimated to be in between an As?As single bond and a formally aromatic As42? system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号