首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Well-ordered nanopore arrays were successfully prepared from polystyrene (PS) and poly(methyl methacrylate) (PMMA) diblock copolymer (DBC) film based on a photochemical approach using 172-nm vacuum ultraviolet (VUV) light. Since the etching selectivity between the PS and PMMA domains against activated oxygen species generated by the VUV irradiation of atmospheric oxygen molecules was markedly different, PMMA was preferentially decomposed, resulting in the formation of PS nanopore arrays. Both the photoetching rate and final morphology depended greatly on the atmospheric pressure during VUV irradiation. Since at 10 Pa the PS domains degraded less due to the shortage of oxygen molecules in the atmosphere, the residual matrix kept its fine nanostructures up to 40 min of irradiation. The matrix could be eliminated completely when irradiation was extended to 60 min at this pressure. On the other hand, at 10(3) Pa the DBC film was removed completely from the substrate within 10 min of irradiation. However, at 10(3) Pa, not only the decomposition of the PMMA domains, but also the photoetching rate of the PS domains accelerated significantly resulting in marked distortion of the generated nanostructures. By selecting an appropriate atmospheric pressure and time for VUV irradiation, we were able to control both nanoarray formation and elimination without the use of any physical and/or chemical treatment.  相似文献   

2.
3.
In this study, we developed a technique for modifying the surface of the silicone elastomer Poly(dimethylsiloxane) (PDMS) by 172‐nm wavelength vacuum ultraviolet (VUV) light exposure. Such materials have high potential for application to micro/nanofluidic devices if their surface properties can be adequately controlled. The hydrophilicity, zeta potential and bonding strength of the VUV‐exposed surfaces were investigated and compared to surfaces exposed to conventional vacuum oxygen plasma. It was found that the proposed technique was effective at modifying the surface conditions from hydrophobic to hydrophilic, increasing the zeta potential, and allowing good bonding to glass. The time required to produce the maximum bonding strength was found to be similar to that for vacuum oxygen plasma exposure. However, since VUV exposure does not require the creation of a vacuum, it offers a faster turnaround, making it suitable for mass production. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The 157 nm photofragmentation of native and derivatized oligosaccharides was studied in a linear ion trap and in a home-built matrix-assisted laser desorption/ionization (MALDI) tandem time-of-flight (TOF/TOF) mass spectrometer, and the results were compared with collision-induced dissociation (CID) experiments. Photodissociation produces product ions corresponding to high-energy fragmentation pathways; for cation-derivatized oligosaccharides, it yields strong cross-ring fragment ions and provides better sequence coverage than low- and high-energy CID experiments. On the other hand, for native oligosaccharides, CID yielded somewhat better sequence coverage than photodissociation. The ion trap enables CID hybrid MS3 experiments on the high-energy fragment ions obtained from photodissociation.  相似文献   

5.
《Chemical physics》1986,103(1):85-91
The vacuum UV spectrum of SnH4 has been recorded up to 110nm (12.26 eV). This spectrum has been interpreted by ab initio calculations (SCF + CI), using a relativistic pseudopotential to describe the core electrons of the tin atom. The spectrum consists of a broad band composed of three maxima (at 8.73, 9.53 and 11.33 eV). The transition below 9.50 eV have been attributed to transitions to diffuse Rydberg states (6s and 6p). The other bands are due essentially to valence transitions.  相似文献   

6.
The vacuum ultraviolet absorption spectrum of bromisilane in the vapor phase is reported. Assignments are made using photoelectron data and oscillator strengths. The absorptions of this compound are related to absorptions of chlorosilane, methyl bromide and methyl chloride. The results of this work indicate the presence of dπ-pπ (SiBr) delocalizations and concomitant stabilization of halogen nonbonding electrons.  相似文献   

7.
Micropatterning techniques have become increasingly important in cellular biology. Cell patterning is achieved by various methods. Photolithography is one of the most popular methods, and several light sources (e.g., excimer lasers and mercury lamps) are used for that purpose. Vacuum ultraviolet (VUV) light that can be produced by an excimer lamp is advantageous for fabricating material patterns, since it can decompose organic materials directly and efficiently without photoresist or photosensitive materials. Despite the advantages, applications of VUV light to pattern biological materials are few. We have investigated cell patterning by using a template of a microstructured organosilane layer fabricated by VUV lithography. We first made a template of a microstructured organosilane layer by VUV lithography. Cell adhesive materials (poly(d-lysine) and polyethyleneimine) were chemically immobilized on the organosilane template, producing a cell adhesive material pattern. Primary rat cardiac and neuronal cells were successfully patterned by culturing them on the pattern substrate. Long-term culturing was attained for up to two weeks for cardiac cells and two months for cortex cells. We have discussed the reproducibility of cell patterning and made suggestions to improve it.  相似文献   

8.
The vacuum ultraviolet spectra of monomethylsilane, monomethylsilane-d3, dimethylsilane, dimethylsilane-d2, trimethylsilane, trimethylsilane-d1, trimethylmonofluorosilane and tetramethylsilane have been recorded in the range 135 nm to 190 nm.  相似文献   

9.
The HeI photoelectron spectrum of difluoramine is reported. The seven ionization potentials within the Hel region have been assigned. Extensive vibrational structure on the first band of both HNF2 and DNF2, and ab initio calculations of the ionic geometry, indicate that the ground ionic state is planar.  相似文献   

10.
A general drawback observed with plasma treatment is the limited stability of the hydrophilic-treated surfaces toward washing, storage, or heating. It has recently been found that oxygen, air, or argon radiofrequency plasmas with higher intensities than normally used can give hydrophilic surfaces having good wash stability. High intensity oxygen plasma treatment of polystyrene and polycarbonate surfaces was therefore carried out using two different capacitively coupled RF reactors with internal shelf electrodes. The obtained surface characteristics and stability were evaluated using contact angle measurements, XPS, AFM, and nanoindentation. For both materials, low water contact angles were found to correlate with high surface oxygen content. Only the surfaces exposed to relatively intense treatments, with self-bias voltages above 140 V (polystyrene) or 240 V (polycarbonate), could withstand washing in ethanol and remain highly hydrophilic. Substantial amounts of nonsoluble material were observed on the plastic substrates after treatment. Furthermore, for polycarbonate Young's modulus of the surface was found to increase with increasing intensity of the plasma. These observations were taken as an indication that extensive cross-linking of the surface layer took place. After more than 6 months of storage, the samples treated with the most intense plasmas (self-bias voltages in the range of 480-600 V) still had water contact angles around 20 degrees .  相似文献   

11.
We experimentally demonstrated that treating a silicone elastomer by a vacuum oxygen plasma, an atmospheric pressure plasma, and vacuum ultraviolet (VUV) radiation resulted in different surface modifications that gave different contact angles, contact angle aging, and bond strengths. The aim of this study was to assess whether high‐throughput surface modification techniques of atmospheric pressure plasma and VUV radiation have the potential to replace conventional oxygen plasma modification. Four silicone elastomers with different hardnesses were used as specimens. The surfaces of all four silicone elastomers were successfully modified from hydrophobic to hydrophilic and they were also bonded to glass surfaces by the three surface modification techniques, although considerable variations were observed in the surface hydrophobicity and the bonding properties. The results clearly reveal that atmospheric pressure plasma and VUV treatment have the potential to replace conventional oxygen plasma treatment. In particular, VUV irradiation produced the most hydrophilic surface that was preserved for a long time. Thus, VUV irradiation is the most promising technique for realizing high‐throughput surface modification and bonding of silicone elastomers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
The effect of environment on cystine disruption by ultraviolet light   总被引:2,自引:0,他引:2  
When cystine is irradiated at pH 1 by 254-nm u.v. the following yields are observed: 4 cystines → 5.2 cysteines + 2.8NH3. Thus, SH production accounts for only 0.65 of the cystine destruction; further C-S breakage to give alanine or serine is not efficient. The yields for cystine and glutathione destruction are essentially the same at pH 1. However the presence of the glutamic and glycine residues stabilize the cystine in glutathione so that NH3 is not lost until the peptide bonds are hydrolyzed. Increasing the pH from 1 to 8.6 increases the yield of cystine destruction in glutathione by 50 per cent. The yield of cystine destruction is greater in both compounds when O2 is present during irradiation (e. g. the cysteic acid yield in glutathione is increased by 50 times). The overall production of SH varies by a factor of 2 in the four proteins-insulin, RNase, trypsin and lysozyme. The present data further support the earlier observation that radiation damage is quite non-random in RNase: at least two and perhaps three of the four constituent cystines must be disrupted before activity is lost: i.e. the most radiosensitive cystines are not critical for enzymic activity. Similarly, in both trypsin and lysozyme the integrity of the most radiosensitive cystines also does not appear to be critical for the retention of enzymic potential. In insulin, however, all three cystines appear to be crucial for activity and to have approximately equal radiosensitivities. These differences in sensitivity of cystines in different proteins must depend specifically upon energy transfer and/or chemical interactions between the chromophoric groups. If yields are calculated on the basis of those quanta absorbed only in the cystines, values about 5 to 8 times greater than those in the model compounds cystine and oxixized glutathione are obtained. The yields of cystine destruction are much higher in those protiens which contain trypotophan.  相似文献   

13.
Mercury in the atmosphere was analyzed continuously without prior scrubbing or sample collection. The mercury resonance line at 184.9 nm was utilized. This was made possible with an r.f. carbon rod atomizer and by pumping the monochromator with argon : the sensitivity was 0.1 μg Hg m-3. The method was sensitive to the type of mercury light source used. Strong reversal of the resonance lines on commercial hollow cathodes was indicated. Some anomalous temperature affects were observed.  相似文献   

14.
The efficacy of vacuum ultraviolet irradiation for oxidizing the surface of cellulose fibers was compared to that of the conventional wet and dry processes. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 357–361, 1999  相似文献   

15.
This work is the continuation of the investigations of changes in the structure of polystyrene initiated by radiation of wavelengths λ ≥ 270 nm in oxygen-free solutions in CCl4 and CHCl3. Coupled integral and quasielastic light scattering techniques have been applied, enabling observations of changes in the molecular weight distribution function w(M). On the basis of the experimental data and application of Saito and Inokuti's theoretical results, it is shown that in the irradiated solutions polystyrene undergoes simultaneous chain scission and crosslinking. The average number of scissions and crosslinks per macromolecule as a function of irradiation time is calculated. The effect of macromolecular mobility on both photochemical processes is also discussed.  相似文献   

16.
Surface degradation of wood by ultraviolet light   总被引:1,自引:0,他引:1  
Wood is beautiful but sensitive to light. Because of the chromophoric system at its surface, ultraviolet light cannot penetrate it deeper than 80 μm. Surface characteristics of ultraviolettreated wood were analyzed by infrared and ultraviolet spectroscopy. Analyses of infrared spectra revealed that ultraviolet-treated wood is rich in carboxylic and carbonyl chromophoric groups and poor in aromatic functional groups. Ultraviolet spectral studies suggest that water-soluble low molecular weight fractions of degraded products from the wood surface are mainly derived from lignin. These degradation products contained carbonyl conjugated phenolic hydroxyl groups and had a weight-average molecular weight of about 900, confirmed by gel permeation chromatography.  相似文献   

17.
We investigate the mechanism of polydimethylsiloxane (PDMS) surface modification by 172‐nm vacuum ultraviolet (VUV) light. Time‐of‐flight secondary ion mass spectrometry and optical spectrometry are used to measure the chemical composition and VUV transmittance of the PDMS before and after surface modification, respectively. For modified samples of bulk PDMS, the VUV transmittance and the depth of the modified region increased with increasing VUV dose. This can be explained by the following self‐reinforcing cycle of (1) modification of PDMS by VUV light to a more silica‐like composition, (2) improvement of the VUV light transparency, and (3) deeper modification. For thin‐film samples of PDMS formed on sapphire substrates, the transmittance at 172 nm also increased with increasing VUV dose and exceeded that of sapphire in the region from 172 to 300 nm. Finally, thin‐film samples of PDMS formed on silicon substrates, which function as a VUV reflector, were also investigated. For these samples, the secondary ion depth profiles for several chemical species in the PDMS were oscillatory, probably due to the interference of the incident and reflected VUV light. These results strongly suggest that the photon energy of the VUV light plays an important role in modifying PDMS.  相似文献   

18.
We demonstrate that the vacuum ultraviolet (VUV) photodissociation dynamics of N(2) and CO(2) can be studied using VUV photoionization with time-sliced velocity-mapped ion imaging (VUV-PI-VMI) detection. The VUV laser light is produced by resonant sum frequency mixing in Kr. N(2) is used to show that when the photon energy of the VUV laser is above the ionization energy of an allowed transition of one of the product atoms it can be detected and characterized as the wavelength is varied. In this case a β parameter = 0.57 for the N((2)D°) was measured after exciting N(2)(o(1)Π(u), v(') = 2, J(') = 2) ← N(2)(X(1)Σ(g) (+), v(") = 0, J(") = 1). Studies with CO(2) show that when there is no allowed transition, an autoionization resonance can be used for the detection of a product atom. In this case it is shown for the first time that the O((1)D) atom is produced with CO((1)Σ(+)) at 92.21 nm. These results indicate that the VUV laser photodissociation combined with the VUV-PI-VMI detection is a viable method for studying the one-photon photodissociation from the ground state of simple molecules in the extreme ultraviolet and VUV spectral regions.  相似文献   

19.
We studied the photolysis of a fluoroethylene–fluoropropylene copolymer (FEP) film by vacuum ultraviolet (VUV) radiation from a resonance Xe lamp at a wavelength of 147 nm and air pressures of 0.05 and 2.5 Torr. The chemical changes in the FEP surface layer were investigated by Fourier-transform infrared spectroscopy with attenuated total reflection attachment and X-ray photoelectron spectroscopy. Double bonds were found to be the main product in the case of VUV treatment at 0.05 Torr, while photo-oxidation of FEP occurred predominantly by VUV treatment at 2.5 Torr under formation of the —CF2C(O)F group. This oxygen-containing group was more effectively formed in the FEP surface layer by VUV photo-oxidation than by conventional surface oxidation techniques such as treatments by plasma and corona discharge and ozone. Storage of the VUV-treated polymers in air at 50% relative humidity resulted in hydrolysis of —CF2C(O)F to the —CF2COOH group. Substantial improvement of the film wettability was noticed after VUV photo-oxidation. These findings suggest that VUV irradiation provides a high potential for surface modification of fluorinated polymers which are known to be particularly resistant against functionalization by conventional surface modification techniques such as plasma treatment. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2215–2222, 1998  相似文献   

20.
The vapor phase absorption spectra of PF3, PF2Cl, PFCl2, and PCl3 are reported in the vacuum ultraviolet spectral region 2400—1200 A. These results are compared with information obtained from photoelectron spectra. A brief discussion of the spectra in terms of analogous absorption regions and results from CNDO/2 calculations are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号