首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A new route to isoindazoles and cinnolines through the cyclization of (2-alkynylphenyl)triazenes under neutral conditions is presented. The products that result from heating the starting triazenes depend on both the type of alkyne ortho to the triazene functionality and the temperature used. Butadiyne moieties ortho to dialkyltriazenes yield bis-isoindazole dimers when heated to 150 degrees C in MeI. A requirement for cyclization in MeI is that the (2-alkynylphenyl)triazene must contain a suitably electron-withdrawing substituent on the phenyl ring to deactivate the triazene toward methylation-induced decomposition to an iodoarene. Ethynyl moieties ortho to dialkyltriazenes yield both isoindazole dimers as well as 3-formylisoindazoles when subjected to the same conditions. Replacing MeI with 1,2-dichlorobenzene as solvent allows for the general cyclization of (2-ethynylphenyl)dialkyltriazenes. Heating to 170 degrees C results in a mixture of isoindazole and cinnoline products, whereas the cinnolines are produced exclusively in high yield at 200 degrees C. Alternatively, the isoindazoles can be obtained in good to excellent yield by stirring a 1,2-dichloroethane solution of the starting triazene with CuCl overnight at 50 degrees C.  相似文献   

2.
Octanoylalaninato-metal (metal = calcium(II), yttrium(III), lanthanum(III), and zinc(II)) complexes were prepared and the first three metal complexes were found to readily form transparent and stable molecular glasses from methanol and chloroform solutions. The process of glass formation from solution was studied in detail. The effect of the central metal ions on the formation of glassy states was remarkable: the lanthanum and calcium complexes assumed glassy or crystalline states depending on the isolation method and the yttrium complex had a large tendency to assume an amorphous state, whereas the zinc complex did not assume a pure and stable glassy-state. The glass transition temperatures were 50 degrees C for the yttrium complex and 70-75 degrees C for the lanthanum and calcium complexes when these complexes are monohydrates prepared by a solvent-cast method, whereas they increase by 10-30 degrees for the hemihydrates which were obtained by an annealing treatment at 110 degrees C. The coordinated water was eliminated from the solid above the glass transition temperature. The glassy state was regarded as a result of the self-aggregation of the metal complex in solution by an entanglement of the methylene chains with one another. SAXS showed the presence of two disordered bilayer structures with 2.2 nm and 4.5 nm periods in the glassy states. The structures of the molecular assemblies in the solid states and solutions were compared by SAXS and NMR studies. EXAFS studies confirmed the coordination numbers of oxygen atoms around the yttrium and lanthanum atoms in the glassy states for the yttrium and lanthanum complexes to be about 7.  相似文献   

3.
The FK506-FKBP12 binding-domain of the kinase FRAP (FRB) forms a classic up-down four-helical bundle. The folding pathway of this protein has been investigated using a combination of equilibrium and kinetic studies. The native state of the protein is stable with respect to the unfolded state by some 7 kcal mol(-1) at pH 6.0, 10 degrees C. A kinetic analysis of unfolding and refolding rate constants as a function of chemical denaturant concentration suggests that an intermediate state may be populated during folding at low concentrations of denaturant. The presence of this intermediate state is confirmed by refolding experiments performed in the presence of the hydrophobic dye 8-anilinonaphthalene-1 sulfonate (ANS). ANS binds to the partially folded intermediate state populated during the folding of FRB and undergoes a large change in fluorescence that can be detected using stopped-flow techniques. Analysis of the kinetic data suggests that the intermediate state is compact and it may even be a misfolded species that has to partially unfold before it can reach the transition state. Folding and unfolding rate constants in water are approximately 150-200 s(-1) and 0.005-0.06 s(-1), respectively, at neutral pH and 10 degrees C. The folding of FRB is somewhat slower than for other all-helical proteins, probably as a consequence of the formation of a metastable intermediate state. The folding rate constant in the absence of any populated intermediate can be estimated to be 8800 s(-1). Despite the presence of an intermediate state, which effectively slows folding, the protein still folds rapidly with a half-life of 5 ms at 10 degrees C. The dependence of the rate constants on denaturant concentration indicates that the transition state for folding is compact with some 80% of the surface area exposed in the unfolded state buried in the transition state. Data presented for FRB is compared with kinetic data obtained for other all-helical proteins.  相似文献   

4.
DFT calculations support a concerted mechanism for xanthine oxidase and aldehyde oxidase hydride displacement from the sp(2) carbon of 6-substituted 4-quinazolinones. The variations in transition state structure show that C-O bond formation is nearly complete in the transition state and the transition state changes are anti-Hammond with the C-H and C-O bond lengths being more product-like for the faster reactions. The C-O bond length in the transition state is around 90% formed. However, the C-H bond is only about 80% broken. This leads to a very tetrahedral transition state with an O-C-N angle of 109 degrees. Thus, while the mechanism is concerted, the antibonding orbital of the C-H bond that is broken is not directly attacked by the nucleophile and instead hydride displacement occurs after almost complete tetrahedral transition state formation. In support of this the C=N bond is lengthened in the transition state indicating that attack on the electrophilic carbon occurs by addition to the C=N bond with negative charge increasing on the nitrogen. Differences in experimental reaction rates are accurately reproduced by these calculations and tend to support this mechanism.  相似文献   

5.
The metastable crystalline lamella was found in the Krafft transition of aqueous cetylpyridinium chloride (CPC) solutions. Temperature-dependent profiles of small-angle X-ray scattering (SAXS) for the CPC solution incubated for 10 min at 5 degrees C exhibited the metastable lamella structure with a lattice spacing of dL = 3.19 nm at temperatures below 12 degrees C and the stable lamella structure with a lattice spacing of dL = 2.85 nm at temperatures between 12 and 19 degrees C. The former lamella structure, however, was not observed in the temperature scanning SAXS profiles of the CPC solution incubated for 24 h at 5 degrees C. The latter lamella structure observed in the SAXS profile mentioned above started melting at 18 degrees C. The electric conductance change of the CPC solution with a time elapsed after dropping the temperature showed the existence of the temperature-dependent induction period in the Krafft transition, indicating high activation energies for the transition. In the differential scanning calorimetry measurements over temperatures ranging from 5 to 30 degrees C, a single endothermic enthalpy peak at 19 degrees C observed for the CPC solution incubated at 5 degrees C for a longer period than 6 h was split into double peaks at 14 and 19 degrees C when the same solution was incubated at 5 degrees C for a shorter period than 6 h. The observed calorimetric behavior is explained by the existence of the metastable crystalline state that grows faster and melts at a lower melting temperature than the stable crystalline state.  相似文献   

6.
Self-crosslinkable poly(arylene ether)s 6 , and 8 , containing pendent triazene groups were prepared by nucleophilic substitution reaction of poly(arylene ether)s 5 , and 7 , respectively, with 1-[4-(4-hydroxyphenoxy)phenylene]triazenes, 4 , in the presence of potassium carbonate in N,N-dimethylacetamide. A series of triazenes 4 containing various substituents have been synthesized. Self-crosslinkable polymer 6e containing phenyl-substituted triazene pendants can be crosslinked at 215°C, which is about 40°C lower than the glass transition temperature of the virgin base polymer 5 . The degree of crosslinking can be tailored by varying the concentration of the pendent phenylenetriazene groups in the polymer. After curing, the flexible polymer films (ca. 10 μm thick) exhibit high gel contents, increased glass transition temperatures, improved resistance to organic solvents, and little change in dielectric constant and thermal stability. These self-crosslinkable poly(arylene ether)s are potential candidates for electronic applications. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
Molecular mobility of the paracetamol amorphous form   总被引:3,自引:0,他引:3  
The purpose of this paper is to study the molecular mobility of paracetamol molecules in their amorphous state below the glass transition temperature (Tg) in order to evaluate the thermodynamic driving force which allows the amorphous form to recrystallize under different polymorphic modifications. Samples were aged at temperatures of -15, 0, 6, and 12 degrees C for periods of time from 1 h to a maximum of 360 h. The extent of physical aging was measured by a DSC study of enthalpy recovery in the glass transition region. The onset temperature of glass transition was also determined (Tg). Enthalpy recovery (deltaH) and change in heat capacity (deltaCp) were used to calculate the mean molecular relaxation time constant (tau) using the empirical Kohlausch-Williams-Watts (KWW) equation. Enthalpy recovery and onset glass transition temperature increased gradually with aging and aging temperatures. Structural equilibrium was reached experimentally only at an aging temperature of 12 degrees C (Tg-10 degrees C), according to the deltaH(infinity) results. The experimental model used is appropriate only at lower aging temperatures, while at higher ones the complexity of the system increases and molecular polymorphic arrangement could be involved. When structural equilibrium is experimentally reached, molecules can be arranged in their lowest energy state, and the polymorphic form I formation is the one preferred.  相似文献   

8.
The thermal properties of the dispersion of sodium salt of dimyristoylphosphatidylglycerol (NaDMPG) in water have been investigated as functions of incubation temperature and aging time by DSC, XRD, sodium ion activity, pH, zeta-potential, and IR measurements. The DSC charts for NaDMPG dispersions incubated below 30 degrees C showed an endothermic peak at 31.7 degrees C with a small shoulder peak at Tm (gel-liquid crystal transition temperature: 23.5 degrees C). The temperature of 31.7 degrees C coincides with the T* temperature at which a high-order transition in the NaDMPG bilayer assembly has been found to occur in our previous studies. However, no peak was observed for the dispersions incubated above 32 degrees C. These results indicate that thermal properties of NaDMPG bilayers definitely differ below and above the T* temperature. The dispersion which had been once incubated at 40 degrees C for 24 h never showed the endothermic peak at T* even after the further aging at 3 degrees C for 12-day. Namely, the NaDMPG bilayer assembly exhibits an intensive thermohysteresis. The XRD charts for the NaDMPG dispersions incubated at 25 degrees C showed a sharp X-ray diffraction pattern corresponding to the repeat distance of d = 4.75 nm regardless of their aging time, while the dispersions incubated at 40 degrees C had no diffraction peak until 9-day elapsed. After 10-day aging at 40 degrees C, however, a diffraction peak corresponding to d = 5.55 nm clearly appeared. In the DSC measurements for the dispersion incubated at 40 degrees C, a few endothermic peaks began to appear between Tm and T* after approximately 7-day aging. Then, they shifted toward higher temperatures and finally converged into a single peak at 40-42 degrees C after 14-day aging. These XRD and DSC peaks observed after a long period of aging time above T* suggest that conformations of the hydrophilic groups and the hydrocarbon chains in the NaDMPG bilayers take a more tight and closer arrangement very slowly via an intermediate state above T*, and a new gel phase of the bilayers is consequently formed, the transition temperature (T(I) temperature) of which is 40-42 degrees C. A molecular interpretation for such transition processes in the bilayer assembly of NaDMPG dispersions has been proposed on the basis of pH, sodium ion activity, zeta-potential, IR data, etc.  相似文献   

9.
Nucleophilic addition reactions of benzylamines (BA; XC6H4CH2NH2) to benzylidene-1,3-indandiones (BID; YC6H4CH=C(C=O)2C6H4) have been studied in acetonitrile at 25.0 degrees C. The rate is first-order with respect to BA and BID, and no base catalysis is observed. The structure-reactivity behaviors (k2, rhoX, betaX, and betaY) are intermediate between the two series of addition reactions of BA to beta-nitrostyrene (NS) and benzylidenemalononitrile (BMN) in acetonitrile. The normal kinetic isotope effects, kH/kD > 1.0, involving deuterated BAs (XC6H4CH2ND2) are smaller than those for the reactions of NS and BMN suggesting a somewhat looser bond formation in the transition state. The reaction is predicted to proceed in a single step with concurrent C(alpha)-N bond formation and proton transfer to C(beta). A hydrogen-bonded, four-center type cyclic transition state is proposed.  相似文献   

10.
[reaction: see text] Pentacoordinate 1,2-oxastibetanes 14a-d, which are formal [2 + 2]-cycloadducts of the reactions of stibonium ylides with carbonyl compounds, were successfully synthesized by the reactions of the corresponding bromo-2-hydroxyalkylstiboranes with NaH. The crystal structures of 14a and 14c were established by X-ray crystallographic analyses, showing their distorted trigonal bipyramidal structures and smaller C-Sb-O angles of the four-membered ring around antimony than the C-P-O angle of pentacoordinate 1,2-oxaphosphetane 3. The 1H, 13C, and 19F NMR spectra of 14a-d are consistent with the trigonal bipyramidal structure in the solution state. Although 14a did not decompose at all at 220 degrees C in o-xylene-d(10), the thermolyses of 3-phenyl-1,2-oxastibetane 14c were carried out at 220 degrees C in o-xylene-d(10) and at 140 degrees C in acetonitrile-d(3) to give the corresponding oxirane 28 with retention of configuration and cyclic stibinite 25. The formation of 28 is explained by apical-equatorial ligand coupling around antimony via a polar transition state, which is more favorable than olefin formation. In contrast, the thermolyses of 14c in the presence of LiBr and LiBPh4 gave oxirane 29 with inversion of configuration and the olefin 30, respectively. The formation of 29 and 30 is considered to proceed via an anti-betaine-type intermediate and hexacoordinate 1,2-oxastibetanide 36, respectively. Selective formation of 28, 29, and 30 in the thermolyses of 14c, which is regarded as an intermediate in the reaction of an alpha-phenyl-substituted stibonium ylide with a carbonyl compound, showed that the change of the reaction conditions controls the reactivity of a 1,2-oxastibetane compound.  相似文献   

11.
A multilayer LB film and a casting film of reversed duckweed polymer ES-3 on Au-evaporated glass slides were investigated by Fourier Transform infrared grazing reflection-absorption spectroscopy. It is found that the two kinds of ordered ultrathin films have different orientation of alkyl chains, nearly perpendicular to the substrate surface for the LB film while rather tilted for the casting film. The studies on their thermal transition behaviors indicate that both of the films have three phase transition processes, respectively, occurring near 65, 105 and 140 degrees C for the former while near 80, 105 and 140 degrees C for the latter, but show different transition behavior in the each corresponding transition process. It is referred that at room temperature there are island-like domain structures formed in the LB film, but no ones in the casting film; however, the latter can form the domain structures between the first two transition points due to the desorption of solvents. The formation of domain structure seems to play two important roles, one of which is to make alkyl chains more perpendicular to the substrate surface, and the other to make alkyl chains more packed closely. Thermal cyclic experiments reveal that neither of the films could return to its original state after thermal cyclic treatment up to the temperature, which is above the third transition point, although its alkyl chain becomes highly ordered again.  相似文献   

12.
The intramolecular Diels-Alder (IMDA) reactions of C(8)-substituted decatrienoates have been studied. The stereospecific formation of 11 via an endo-boat-9 transition state attests to the powerful directing influence of a C(8) substituent in the IMDA of decatrienoate. In addition, the contrasting observations that stereospecific 9 --> 11 occurs at room temperature while the nor-tert-butyl substrate (4a) requires 125 degrees C/5 h reaction conditions and produces a 60:40 mixture of diastereomers provide clear evidence that a bulky C(8) substituent is a powerful conformational activator of the IMDA.  相似文献   

13.
Kinetic studies of the addition of benzylamines to a noncyclic dicarbonyl group activated olefin, ethyl alpha-acetyl-beta-phenylacrylate (EAP), in acetonitrile at 25.0 degrees C are reported. The rates are lower than those for the cyclic dicarbonyl group activated olefins. The addition occurs in a single step with concurrent formation of the Calpha-N and Cbeta-H bonds through a four-center hydrogen bonded transition state.The kinetic isotope effects (kH/kD > 1.0) measured with deuterated benzylamines (XC6H4CH2ND2) increase with a stronger electron acceptor substituent (deltasigmaX > 0) which is the same trend as those found for other dicarbonyl group activated series (1-4), but is in contrast to those for other (noncarbonyl) group activated series (5-9). For the dicarbonyl series, the reactivity-selectivity principle (RSP) holds, but for others the anti-RSP applies. These are interpreted to indicate an insignificant imbalance for the former, but substantial lag in the resonance delocalization in the transition state for the latter series.  相似文献   

14.
We report the results of measurements of x-ray reflectivity and grazing incidence x-ray diffraction from the liquid-vapor interfaces of four dilute alloys of Bi in Ga with mole fractions x(Bi)=0.0032, 0.0023, 0.00037, and 0.000037. The monolayer coverage of the alloys with x(Bi)=0.0023, and x(Bi)=0.00037 is about 0.85 and only very slightly temperature dependent. The monolayer coverage in the lowest-concentration alloy, with x(Bi)=0.000037, ranged from 0.82 at 29 degrees C to 0.58 at 110 degrees C. In none of these alloys, down to the lowest temperature used, 29 degrees C, can we find any evidence for crystallization of the Bi monolayer that segregates as the outermost stratum of the liquid-vapor interface. Drawing on theoretical arguments we propose that the transitions inferred from the second-harmonic generation and plasma generation studies of dilute Bi in Ga alloys are from the liquid state to the hexatic state of the Bi monolayer. The data for the alloy with x(Bi)=0.000037 suggest that near 80 degrees C there is a disordered phase-to-disordered phase transition.  相似文献   

15.
We previously found that a copolymer, poly(NIPAM- co-BP), consisting of N-isopropylacrylamide (NIPAM) and benzophenone (BP) units, behaves as a photosensitizer showing temperature-controlled oxygenation activity by singlet oxygen ( (1)O 2) in water ( J. Am. Chem. Soc. 2006, 128, 8751-8753 ). This polymer shows a heat-induced oxygenation enhancement at <20 degrees C, while showing suppression at >20 degrees C. This is driven by a heat-induced phase transition of the polymer from coil to micelle and then to globule state, controlling the stability and diffusion of (1)O 2 and the location of substrate. In the present work, effects of polymer concentration and BP content of the polymer on the oxygenation activity were studied at 5-35 degrees C. Increase in the polymer concentration leads to activity decrease at >20 degrees C due to strong polymer aggregation, suppressing incident light absorption of the BP units. With a decrease in BP content of the polymer, heat-induced oxygenation enhancement at <20 degrees C is more pronounced because formation of small size micelles accelerates (1)O 2 oxygenation. The obtained findings reveal that the polymer with low BP content, when used at high concentration, shows clear-cut off- on- off activity change against the temperature window: very low activity at <5 degrees C and >25 degrees C, and very high activity at middle temperature range.  相似文献   

16.
Grafting of C-6, C-16 and C-18 alkyl chains onto the hydrophilic Mn-Anderson clusters (compounds 2-4) has been achieved. Exchange of the tetrabutyl ammonium (TBA) with dimethyldioctadecyl ammonium (DMDOA) results in the formation of new polyoxometalate (POM) assemblies (compounds 5-6), in which the POM cores are covalently functionalized by hydrophilic alkyl-chains and enclosed by surfactant of DMDOABr. As a result, we have been able to design and synthesize POM-containing hydrophobic materials beyond surfactant encapsulation. In solid state, scanning electron and transmission electron microscopy (SEM and TEM) studies of the TBA salts of compounds 3 and 4 show highly ordered, uniform, reproducible assemblies with unique segmented rodlike morphology. SEM and TEM studies of the DMDOA salts of compounds 5 and 6 show that they form spherical and sea urchin 3D objects in different solvent systems. In solution, the physical properties of compound 5 and 6 (combination of surfactant-encapsulated cluster (SEC) and surface-grafted cluster (SGC)) show a liquid-to-gel phase transition in pure chloroform below 0 degrees C, which are much lower than other reported SECs. By utilizing light scattering measurements, the nanoparticle size for compounds 5 and 6 were measured at 5 degrees C and 30 degrees C, respectively. Other physical properties including differential scanning calorimetry have been reported.  相似文献   

17.
The control of cell adhesion is crucial in many procedures in cellular biotechnology. A thermo-responsive poly(N-isopropylacrylamide)-poly(ethylene glycol)-thiol (PNIPAAm-PEG-thiol) copolymer was synthesized for the formation of self-assembled monolayers (SAM) that allow the control of adhesion of cells on gold substrates. The contact angle of water on these layers varies between 65 degrees at a temperature of 45 degrees C and 54 degrees at 25 degrees C. This behaviour is consistent with a transition of the polymer chains from an extended and highly hydrated to a collapsed coil-like state. At 37 degrees C, cultivated fibroblasts adhere and spread normally on this surface and detach by reducing the temperature below the lower critical solution temperature (LCST). Layers can repeatedly be used without loss of their functionality. In order to quantify the capability of the copolymer layer to induce cell detachment, defined shear forces are applied to the cells. For this purpose, the laminar flow in a microfluidic device is used. Our approach provides a strategy for the optimization of layer properties that is based on establishing a correlation between a functional parameter and molecular details of the layers.  相似文献   

18.
A simple-structured copolymer, poly(NIPAM-co-HC), consisting of N-isopropylacrylamide (NIPAM) and 4-(4-dimethylaminostyryl)pyridine (hemicyanine, HC) units as thermoresponsive and fluorescent signaling parts, respectively, has been synthesized. This copolymer dissolved in water shows very weak fluorescence at <25 degrees C, while showing fluorescence enhancement at >25 degrees C. The fluorescence intensity increases with a rise in temperature and saturates at >40 degrees C, enabling temperature detection at 25-40 degrees C. The fluorescence enhancement is driven by a heat-induced phase transition of the polymer from coil to globule state. The HC units within the coil state polymer exist as the nonfluorescent benzenoid form; however, the less polar domain formed inside the globule state polymer leads to transformation of the HC unit to the fluorescent quinoid form, resulting in heat-induced fluorescence enhancement. The fluorescence intensity measured at 40 degrees C is >20-fold higher than the intensity at <25 degrees C, which is the highest enhancement value among the fluorescent thermometers proposed so far. The polymer shows reversible fluorescence enhancement/quenching, regardless of the heating/cooling process. In addition, the polymer shows high reusability with a simple recovery process.  相似文献   

19.
Alpha-Fe(2)O(3) nanorods and nanotubes have been synthesized and characterized by high-resolution transmission electron microscopy and X-ray diffraction. By means of different surfactant assistance, the high-quality one-dimensional products were obtained, respectively, with aqueous butanol solution as the solvent and carbamide as the base, giving rise to single-crystalline products at 150 degrees C. The formation mechanism has been presented. Significantly, the magnetic investigations show that the magnetic properties are strongly shape-dependent; i.e., the nanorods have a Morin transition at 166 K from canted antiferromagnetic state to antiferromagnetic state, while the nanotubes exhibit a three-dimensional magnetic ordering above 300 K that has been attributed to the presence of small particles in a few regions of the tubes.  相似文献   

20.
A novel dialkylurea gelator, 1-methyl-2,4-bis(N(')-octadecaneureido)benzene (designated as MBOB) was synthesized, which can turn some organic solvents into organogels at extremely low concentrations (<2 wt%). The (1)H NMR spectra of MBOB in solution (110 degrees C) and in the gel state (30 degrees C) indicate that intermolecular hydrogen bonding is the driving force for the self-assembly of MBOB. In the process of the self-assembly of MBOB, orientation of MBOB aggregates occurs under the influence of external fields, such as a centrifugal force and shearing force fields. The minimum gelation concentrations of MBOB in organic solvents under a centrifugal force field were significantly higher than those in the absence of a centrifugal force field, indicating a significant effect of the external field on the self-assembly of MBOB. Field emission scanning electron microscopy (FE-SEM) provided evidence for a significantly phase transition of the MBOB aggregates from an amorphous state in the absence of the external field to an oriented state under conditions of a centrifugal or shearing force during the gelation process. A self-assembled structure of MBOB is proposed based upon an X-ray diffraction (XRD) analysis and a molecular simulation. DSC analysis of the organogels indicates that the phase transition temperature increased from 58.5 degrees C in the absence of the external field to 63.3 degrees C under a centrifugal force field and 62.2 degrees C under a shearing force field. The enthalpy of the phase transition decreased from 3.1 J/g in the absence of an external field to 2.6 J/g under a centrifugal force field and 2.7 J/g under a shearing force field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号