首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article examines the extensional flow and viscosity and the converging–diverging geometry as the basis of the peculiar viscoelastic behavior in porous media. The modified Bautista–Manero model, which successfully describes elasticity, thixotropic time dependency and shear-thinning, was used for modeling the flow of viscoelastic materials which also show thixotropic attributes. An algorithm, originally proposed by Philippe Tardy, that employs this model to simulate steady-state time-dependent flow was implemented in a non-Newtonian flow simulation code using pore-scale modeling. The simulation results using two topologically-complex networks confirmed the importance of the extensional flow and converging–diverging geometry on the behavior of non-Newtonian fluids in porous media. The analysis also identified a number of correct trends (qualitative and quantitative) and revealed the effect of various fluid and flow parameters on the flow process. The impact of some numerical parameters was also assessed and verified.  相似文献   

2.
An analysis is performed to study transient free convective boundary layer flow of a couple stress fluid over a vertical cylinder, in the absence of body couples. The solution of the time-dependent non-linear and coupled governing equations is carried out with the aid of an unconditionally stable Crank-Nicolson type of numerical scheme. Numerical results for the steady-state velocity, temperature as well as the time histories of the skin-friction coefficient and Nus- selt number are presented graphically and discussed. It is seen that for all flow variables as the couple stress control parameter, Co, is amplified, the time required for reaching the temporal maximum increases but the steady-state decreases.  相似文献   

3.
A new numerical scheme for simulation of viscoelastic fluid flows was designed, making use of finite element algorithms generally regarded as advantageous for tackling the problem. This includes the Lagrangian approach for the solution of viscoelastic constitutive equation using the co-deformational frame of reference with a possibility of analytically solving the equation along the particles trajectories, which in turn allowed eluding the solution of any system of linear equations for the stress. Then, the full ellipticity of the momentum conservation equation was utilised thanks to a possibility of accurate determination of the stress tensor independently of the velocity field at the current stage of computation. The needed independent stress was calculated at each time step on the basis of the past deformation history, which in turn was determined on the basis of the past velocity fields, all incorporated into a modified Euler time stepping algorithm. Owing to explicit inclusion of the full viscous term from the viscoelastic model into the momentum conservation equation, no stress splitting was necessary. The trajectory feet tracking was done accurately using a semi-analytic solution of the displacement gradient evolution equation and a weak formulation of the kinematics equation, the latter at the expense of solving an extra symmetric system of linear equations.The error expressed in the form of the Sobolev norms was determined using a comparison with available analytical solution for UCM fluid in the transient regime or numerically obtained steady-state stress values for the PTT fluid in Couette flow. The implementation of the PTT fluid model was done by modifying the relative displacement gradient tensor so that a new convective frame was defined.The stability of the algorithm was assessed using the well-known benchmark problem of a sphere sedimenting in a tube with viscoelastic fluid. The stable numerical results were obtained at high Weissenberg numbers, with the limit of convergence Wi=6.6, exceeding any previously reported values. The robustness of the code was proven by simulation of the Weissenberg effect (the rod-climbing phenomenon) with the use of PTT fluid.  相似文献   

4.
The transient deformation of a bubble in a viscoelastic extentional flow is analyzed by means of a finite element algorithm for viscoelastic moving boundary problems. Using the Oldroyd-B constitutive model, we find that bubbles in a viscoelastic fluid deform to the same steady-state configurations as bubbles in a Newtonian fluid at equal values of the far-field extensional stresses (corresponding to different stretch rates). Vapor bubbles in a developed extensional flow collapse more readily in the viscoelastic liquid than bubbles in Newtonian fluids because of the large compressive stresses associated with the viscoelastic liquid.  相似文献   

5.
The hydrodynamic equations of a viscous incompressible fluid are modified for axisymmetric flows in a pipe of time-varying radius. A new exact time-dependent solution of these equations which generalizes the well-known classic steady-state Hagen–Poiseuille solution for flow in a pipe of constant radius (independent of time) is obtained. It is shown that the law of time variation in the pipe radius can be determined from the condition of the minimum work done to pump a given fluid volume through such a pipe during the radius variation cycle period. A generalization of the optimal branching pipeline in which, instead of the Poiseuille law, its modification based on the use of the exact solution corresponding to the time-dependent M-shaped regime is employed is suggested. It is shown that the hydraulic resistance can be reduced over a certain range of the parameters of the time-dependent flow regime as compared with the steady-state pipe flow regime. The conclusion obtained can be used for the development of the hydrodynamic basis for simulating the optimal hydrodynamic blood flow regime.  相似文献   

6.
In this work, the linear stability analysis of the viscoelastic Taylor-Couette flow against non-axisymmetric disturbances is investigated. A pseudospectrally generated, generalized algebraic eigenvalue problem is constructed from the linearized set of the three-dimensional governing equations around the steady-state azimuthal solution. Numerical evaluation of the critical eigenvalues shows that for an upper-convected Maxwell model and for the specific set of geometric and kinematic parameters examined in this work, the azimuthal Couette (base) flow becomes unstable against non-axisymmetric time periodic disturbances before it does so for axisymmetric ones, provided the elasticity number ε (De/Re) is larger than some non-zero but small value (ε 0.01). In addition, as ε increases, different families of eigensolutions become responsible for the onset of instability. In particular, the azimuthal wavenumber of the critical eigensolution has been found to change from 1 to 2 to 3 and then back to 2 as ε increases from 0.01 to infinity (inertialess flow).In an analogous fashion to the axisymmetric viscoelastic Taylor-Couette flow, two possible patterns of time-dependent solutions (limit cycles) can emerge after the onset of instability: ribbons and spirals, corresponding to azimuthal and traveling waves, respectively. These patterns are dictated solely by the symmetry of the primary flow and have already been observed in conjunction with experiments involving Newtonian fluids but with the two cylinders counter-rotatng instead of co-rotating as considered here. Inclusion of a non-zero solvent viscosity (Oldroyd-B model) has been found to affect the results quantitatively but not qualitatively. These theoretical predictions are of particular importance for the interpretation of the experimental data obtained in a Taylor-Couette flow using highly elastic viscoelastic fluids.  相似文献   

7.
We numerically solve the time-dependent planar Poiseuille flow of a Johnson–Segalman fluid with added Newtonian viscosity. We consider the case where the shear stress/shear rate curve exhibits a maximum and a minimum at steady state. Beyond a critical volumetric flow rate, there exist infinite piecewise smooth solutions, in addition to the standard smooth one for the velocity. The corresponding stress components are characterized by jump discontinuities, the number of which may be more than one. Beyond a second critical volumetric flow rate, no smooth solutions exist. In agreement with linear stability analysis, the numerical calculations show that the steady-state solutions are unstable only if a part of the velocity profile corresponds to the negative-slope regime of the standard steady-state shear stress/shear rate curve. The time-dependent solutions are always bounded and converge to different stable steady states, depending on the initial perturbation. The asymptotic steady-state velocity solution obtained in start-up flow is smooth for volumetric flow rates less than the second critical value and piecewise smooth with only one kink otherwise. No selection mechanism was observed either for the final shear stress at the wall or for the location of the kink. No periodic solutions have been found for values of the dimensionless solvent viscosity as low as 0.01.  相似文献   

8.
The parallelization of a fully implicit and stable finite element algorithm with relative low memory requirements for the accurate simulation of time-dependent, free-surface flows of multimode viscoelastic liquids is presented. It is an extension of our multi-stage sequential solution procedure which is based on the mixed finite element method for the velocity and pressure fields, an elliptic grid generator for the deformation of the mesh, and the discontinuous Galerkin method for the viscoelastic stresses [Dimakopoulos and Tsamopoulos [12], [14]]. Each one of the above subproblems is solved with the Newton–Rapshon technique according to its particular characteristics, while their coupling is achieved through Picard cycles. The physical domain is graphically partitioned into overlapping subdomains. In the process, two different kinds of parallel solvers are used for the solution of the distributed set of flow and mesh equations: a multifrontal, massively parallel direct one (MUMPS) and a hierarchical iterative parallel one (HIPS), while viscoelastic stress components are independently calculated within each finite element. The parallel algorithm retains all the advantages of its sequential predecessor, related with the robustness and the numerical stability for a wide range of levels of viscoelasticity. Moreover, irrespective of the deformation of the physical domain, the mesh partitioning remains invariant throughout the simulation. The solution of the constitutive equations, which constitutes the largest portion of the system of the governing, non-linear equations, is performed in a way that does not need any data exchange among the cluster's nodes. Finally, indicative results from the simulation of an extensionally thinning polymeric solution, demonstrating the efficiency of the algorithm are presented.  相似文献   

9.
The one-dimensional approximation to the time-dependent fiber spinning equations for an upper-convected Maxwell model is shown to consist of a set of four first-order quasilinear hyperbolic equations. The sign of the characteristics is shown to validate the customarily assigned boundary conditions for the time-dependent problem. A truncated set of three equations is presented which admits an analytic steady-state solution which exactly reproduces the Newtonian and high Deborah number viscoelastic limit behaviors. In the truncated set, the hyperbolic character of the equations is preserved and the previous results of a linear stability analysis at zero Reynolds number are well approximated. The normal forms of both the full and truncated fiber spinning equations are derived which are used to formulate stable numerical schemes in the companion paper [1].  相似文献   

10.
We solve the time-dependent simple shear flow of a Johnson–Segalman fluid with added Newtonian viscosity. We focus on the case where the steady-state shear stress/shear rate curve is not monotonic. We show that, in addition to the standard smooth linear solution for the velocity, there exists, in a certain range of the velocity of the moving plate, an uncountable infinity of steady-state solutions in which the velocity is piecewise linear, the shear stress is constant and the other stress components are characterized by jump discontinuities. The stability of the steady-state solutions is investigated numerically. In agreement with linear stability analysis, it is shown that steady-state solutions are unstable only if the slope of a linear velocity segment is in the negative-slope regime of the shear stress/shear rate curve. The time-dependent solutions are always bounded and converge to a stable steady state. The number of the discontinuity points and the final value of the shear stress depend on the initial perturbation. No regimes of self-sustained oscillations have been found.  相似文献   

11.
Creep and creep recovery, stress relaxation and small- and large-amplitude oscillatory shear experiments have been used to study the steady-state flow behaviour and the transient viscoelastic response of wheat flour dough in shear over large ranges of time, stress and strain. The results are discussed with reference to the limited body of reliable literature data. Dough does display a linear viscoelastic domain. The complex character of its non-linear viscoelastic properties is essentially due to the extremely low shear rate limit of the initial Newtonian plateau and to the onset of time-dependent flow behaviour above a certain strain threshold, which explain qualitatively the discrepancies observed in certain cases on a part of the range of the rheological variables explored, despite global self-consistency of the results. Comparison of gluten and dough linear viscoelastic properties shows that dough cannot be viewed simply as a concentrated suspension of starch granules in the hydrated viscoelastic gluten matrix.Paper presented at the second Annual European Rheology Conference (AERC 2005) held in Grenoble, France on April 21–23, 2005.  相似文献   

12.
A finite volume, time‐marching for solving time‐dependent viscoelastic flow in two space dimensions for Oldroyd‐B and Phan Thien–Tanner fluids, is presented. A non‐uniform staggered grid system is used. The conservation and constitutive equations are solved using the finite volume method with an upwind scheme for the viscoelastic stresses and an hybrid scheme for the velocities. To calculate the pressure field, the semi‐implicit method for the pressure linked equation revised method is used. The discretized equations are solved sequentially, using the tridiagonal matrix algorithm solver with under‐relaxation. In both, the full approximation storage multigrid algorithm is used to speed up the convergence rate. Simulations of viscoelastic flows in four‐to‐one abrupt plane contraction are carried out. We will study the behaviour at the entrance corner of the four‐to‐one planar abrupt contraction. Using this solver, we show convergence up to a Weissenberg number We of 20 for the Oldroyd‐B model. No limiting Weissenberg number is observed even though a Phan Thien–Tanner model is used. Several numerical results are presented. Smooth and stable solutions are obtained for high Weissenberg number. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
Herein, an enhanced spectral finite element (SFE) formulation to calculate the time–transient response in cylindrical waveguides is proposed. The original aspect over SFE-based formulations consists in the possibility to account for the effect of material absorption, i.e. guided waves attenuation, on the calculation of the time–transient response.First, the damped steady-state response is constructed by a weighted superposition of the waveguide modal properties obtained from the spectral decomposition of the governing wave equation. To this purpose an enhanced spectrally formulated finite element is developed, in which material damping is included allowing for complex stress–strain viscoelastic constitutive relations in force of the correspondence principle. Dispersive modal properties for the damped waveguide (phase velocity, energy velocity, attenuation and wavestructures) follow straightforwardly by simple formulae. Next, the frequency response of the problem is calculated by weighting the modal data and the spectrum of the applied time-dependent force via Cauchy residue theorem. Finally, the inverse Fourier transform of the frequency response leads to the time–transient response for propagative damped guided waves.The approach is not restricted to any anisotropy degree, holds for any linear viscoelastic constitutive relation that can be characterized and formulated in the frequency domain and it can be applied to SFE formulations for arbitrary cross-section waveguides. A study on guided waves propagating in a scheduled 4.in-40 ANSI steel pipe is presented, where the steel is considered first as perfectly elastic and then as an hysteretic viscoelastic medium, in order to show the effect of material absorption on the time–transient response.  相似文献   

14.
Considered is the long-term cracking of the three-dimensional fiber-reinforced viscoelastic composite with a plane penny-shaped crack under time-dependent loading. The composite has a hexagonal structure and consists of elastic isotropic fibers and viscoelastic isotropic matrix. The material is modeled by transversally isotropic homogeneous linearly viscoelastic medium with some averaged characteristics. The crack propagation planecoincides with the plane of isotropy. A ring-shaped yield zone in front of the moving crack is modeled as a Dugdale's zone with time-dependent stresses. Crack growth under deformation of the composite occurs by application of a slowly increasing tensile load; it is normal to the plane of crack propagation. A convolution-type time operator describes the viscoelastic properties of the matrix material. Use is made of the Volterra principle and the theory of long-term cracking of viscoelastic bodies. The irrational function of integral operator associated with the viscoelastic crack opening expression is expanded into a continued fraction of operators. The solution is reduced to the nonlinear integral equations of crack growth. Numerical results are obtained for a specific material. Crack growth kinetics is discussed in connection with the onset of stable crack growth and crack border stress intensity factor.  相似文献   

15.
We present stable and accurate spectral element methods for predicting the steady-state flow of branched polymer melts past a confined cylinder. The fluid is modelled using a modification of the pom-pom model known as the single eXtended Pom-Pom (XPP) model, where we have included a multi-mode model of a commercial low-density polyethylene. We have analyzed the XPP model and found interesting multiple solutions for certain choices of the parameters which indicate possible problems with the model. The operator-integration-factor-splitting technique is used to discretize the governing equations in time, while the spectral element method is used in space. An iterative solution algorithm that decouples the computation of velocity and pressure from that of stress is used to solve the discrete equations. Appropriate preconditioners are developed for the efficient solution of these problems. Local upwinding factors are used to stabilize the computations. Numerical results are presented demonstrating the performance of the algorithm and the predictions of the model. The influence of the model parameters on the solution is described and, in particular, the dependence of the drag on the cylinder as function of the Weissenberg number.  相似文献   

16.
Solutions of flexible high-molecular-weight polymers or some kinds of surfactant are viscoelastic fluids. The elastic stress is induced in such viscoelastic fluid flows and grows nonlinearly with the flow-rate resulting in many particular flow phenomena, including purely elastic instability. The purely elastic instability can even result in a kind of chaotic fluid motion, the so-called elastic turbulence, which is a recently discovered flow phenomenon and arises at arbitrarily small Reynolds number. By using viscoelastic surfactant solution, we attempted to create the peculiar chaotic fluid motions in several specially designed microchannels in which flows with curvilinear streamlines can be generated. The viscoelastic working fluids were aqueous solutions of surfactant, CTAC/NaSal (cetyltrimethyl ammonium chloride/sodium salicylate). CTAC solutions with weight concentration of 200 ppm (part per million) and 1000 ppm, respectively, at room temperature were tested. For comparison, water flows in the same microchannels were also visualized. The Reynolds numbers for all the microchannel flows were quite small (for solution flows, the Reynolds numbers were the order of or smaller than one) and the flow should be definitely laminar for Newtonian fluid. It was found that the regular laminar flow patterns for low-Reynolds-number Newtonian fluid flow in different microchannels were strongly deformed in solution flows: either asymmetrical flow structures or time-dependent vortical fluid motions appeared. These chaotic flow phenomena were considered to be induced by the viscoelasticity of the CTAC solutions. Discussions about the potential applications using such kind of chaotic fluid motions were also made.  相似文献   

17.
The purely rational theory of Eckart continua (i.e. elastic bodies with a variable relaxed state) is applied to viscometric flows of polymeric melts. The main assumptions are thermodynamic non-interaction of inelastic behaviour and of non-elastic stress, as well as elastic isotropy. After establishing the time-dependent differential equations of viscometric flow, these equations are simplified to a set of algebraic equations describing steady-state flow. From this we deduce two general equations connecting the three elastic steady-state viscometric functions which do not depend upon the elastic behaviour. The law of rubber elasticity used in this paper is described in the Appendix.  相似文献   

18.
We present a new algorithm for solving viscoelastic flows with a general constitutive equation. In our approach the hyperbolic constitutive equation is split such that the term for the convective transport of stress tensor is treated as a source. This allows the stress tensor at each grid point to be expressed mainly in terms of the velocity gradient tensor at the same point. Then, the set of six stress tensor components is found after inverting a six by six matrix at each grid point. Thus we call this algorithm the grid-by-grid inversion method. The convective transport of stress tensor in the constitutive equation, which has been treated as a source, is updated iteratively. The present algorithm can be combined with finite volume method, finite element method or the spectral methods. To corroborate the accuracy and robustness of the present algorithm we consider viscoelastic flow past a cylinder placed at the center between two plates, which has served as a benchmark problem. Also considered is the investigation of the pattern and strength of the secondary flows in the viscoelastic flows through a rectangular pipe. It is found that the present method yields accurate results even for large relaxation times.  相似文献   

19.
This paper presents constitutive models for the anisotropic, finite-deformation viscoelastic behavior of soft fiber-reinforced composites. An essential assumption of the models is that both the fiber reinforcements and matrix can exhibit distinct time-dependent behavior. As such, the constitutive formulation attributes a different viscous stretch measure and free energy density to the matrix and fiber phases. Separate flow rules are specified for the matrix and the individual fiber families. The flow rules for the fiber families then are combined to give an anisotropic flow rule for the fiber phase. This is in contrast to many current inelastic models for soft fiber-reinforced composites which specify evolution equations directly at the composite level. The approach presented here allows key model parameters of the composite to be related to the properties of the matrix and fiber constituents and to the fiber arrangement. An efficient algorithm is developed for the implementation of the constitutive models in a finite-element framework, and examples are presented examining the effects of the viscoelastic behavior of the matrix and fiber phases on the time-dependent response of the composite.  相似文献   

20.
Numerical solutions of viscoelastic flows are demonstrated for a time marching, semi‐implicit Taylor–Galerkin/pressure‐correction algorithm. Steady solutions are sought for free boundary problems involving combinations of die‐swell and stick‐slip conditions. Flows with and without drag flow are investigated comparatively, so that the influence of the additional component of the drag flow may be analysed effectively. The influence of die‐swell is considered that has application to various industrial processes, such as wire coating. Solutions for two‐dimensional axisymmetric flows with an Oldroyd‐B model are presented that compare favourably with the literature. The study advances our prior fixed domain formulation with this algorithm, into the realm of free‐surface viscoelastic flows. The work involves streamline‐upwind/Petrov–Galerkin weighting and velocity gradient recovery techniques that are applied upon the constitutive equation. Free surface solution reprojection and a new pressure‐drop/mass balance scheme are proposed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号