首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five structually distinct coordination polymers [Cd(bte)3](NO3)2 n (1), [Cd(bte)2(H2O)2](NO3)2 n (2), [Cd(bte)(NO2)2] n (3), [Cd(bte)2(H2O)2](H2O)2(ClO4)2 n (4) and [Cd(bte)(NCS)2]n (5) (bte = 1,2-bis(1,2,4-triazol-1-yl)ethane) have been synthesized and characterized. The structures of 1, 2, 3, 4 and 5 consist of a double interpenetrating three-dimensional -poloniumn cubic network, a two-dimensional (4,4) network, a two-dimensional rhombic network, a one-dimensional double chain containing 18-membered [Cd2(bte)2] rings and a two-dimensional rhombic network containing eight-membered [Cd2(SCN)2] rings, respectively.  相似文献   

2.
通过使用氧化锌代替传统的金属无机盐为锌源,制备了手性金属-有机骨架(CMOF)[Zn(L-mal)(H2O)2]n并对其手性分离性能进行了考察。将ZnO和L-苹果酸按物质的量之比1:1溶于水中,在室温下静置24 h即可得到[Zn(L-mal)(H2O)2]n。以100 mg[Zn(L-mal)(H2O)2]n为吸附剂,将250 μL 1 g/L的联糠醛外消旋体加入其中,并以4.5 mL异丙醇和1 mL甲醇为萃取剂和洗脱剂进行选择性吸附实验,最终滤液使用高效液相色谱仪(HPLC)进行分析。结果表明,[Zn(L-mal)(H2O)2]nR-联糠醛具有较好的选择性吸附,其对映体过量(ee)值为20%。该工作为CMOF的绿色制备提供了一定的方法和经验并拓展了其在手性分离领域的应用。  相似文献   

3.
The reactions of Zn(NO3)2 · 6H2O and FeSO4 · 7H2O with 4-PDS (4-PDS = 4,4′-dipyridyldisulfide) and NH4SCN in CH3OH afforded the complexes [Zn(NCS)2(4-PDS)]n (1) and [Fe(NCS)2(4-PDS)2 · 4H2O]n (2), respectively, while the reaction of CoCl2 · 6H2O with 4-PDS in CH3OH gave the complex {[Co(4-PDS)2][Cl]2 · 2CH3OH}n, (3). These complexes have been characterized by spectroscopic methods and their structures determined by X-ray crystallography. The 4-PDS ligands in 1 are coordinated to the metal centers through the nitrogen atoms to form 1-D zigzag-chains, and the distorted tetrahedral coordination geometry at each zinc center is completed by a pair of N-bonded thiocyanate ligands. Compound 2 has a 1-D channel-chain structure and each octahedral Fe(II) metal center is coordinated by four 4-PDS ligands and two trans N-bonded thiocyanate ligands. Weak SS interactions in complex 1 link the 1-D chains into 2-D molecular sheets. In complex 2, the channel chains are interlinked through SS interactions to form molecular sheets, which interpenetrate through the SS interactions to form 3-D structures with large cavities that are occupied by the water molecules. Compound 3 also has a 1-D channel-chain structure with each square-planar Co(II) metal center coordinated by four 4-PDS ligands. Multiple C–HCl hydrogen bonds and SO interactions in 3 link the 1-D chains into 2-D structures.  相似文献   

4.
Two new complexes [Ni(pydc)(H2O)2]n (1) and [Ni2(pydc)2(H2O)5]n (2) (H2pydc = 2,4-pyridinedicarboxylic acid) have been obtained by hydrothermal synthetic method and characterized by single crystal X-ray analysis. In 1 six-coordinate Ni(II) ions are coordinated by pydc ligands to form 2-D layer structures; while in 2 six-coordinate Ni(II) ions are only connected into 1-D zigzag chains constructed by dinuclear nickel units. Although the coordination geometries around Ni(II) centers in both complexes are similar, their structure topologies are greatly tuned by coordination modes of pydc. Variable temperature magnetic susceptibility studies have shown that both compounds 1 and 2 may display antiferromagnetic coupling between paramagnetic metal centers mediated by bridging carboxylate groups.  相似文献   

5.
Two cobalt(II) coordination polymers formed from bte (bte = 1,2-bis(1,2,4-triazol-1-yl)ethane), namely [Co(bte)2(dca)2]n (1) and {[Co(bte)(dca)2] · H2O}n (2), have been synthesized and characterized by elementary analyses, IR, thermogravimetric analyses, X-ray diffraction analyses and magnetic measurements. Compound 1 is a double-chain with Co(II) centers bridged by bte, containing metallocycles of [Co2(bte)2] and trans dca as termination ligands. In 2, each Co(II) center is bonded by two bridging bte ligands and four dca as μ-1,5-dca in different orientations in the 3D network.  相似文献   

6.
Three interpenetrated polymeric networks, {[Co(bpp)(OH-BDC)] · H2O}n (1) [Ni(bpp)1.5(H2O)(OH-BDC)]n (2) and {[Cd(bpp)(H2O)(OH-BDC)] · 2H2O}n (3), have been prepared by hydrothermal reactions of 1,3-bis(4-pyridyl)propane (bpp), 5-hydroxyisophthalic acid (OH-H2BDC), with Co(NO3)2 · 6H2O, Ni(NO3)2 · 6H2O and Cd(NO3)2 · 4H2O, respectively. Single-crystal X-ray diffraction analyses reveal that the three compounds all exhibit interpenetrated but entirely different structures. Compound 1 is a fourfold interpenetrated adamantanoid structure with water molecules as space fillers, in which bpp adopts a TG conformation (T = trans, G = gauche). Compound 2 is an interdigitated structure from the interpenetrated long arms of one-dimensional molecular ladders, while bpp in 2 adopts both TT and TG conformations. Compound 3 is a twofold interpenetrated three-dimensional network from a one-dimensional metal-carboxylate chain bridged by TG conformational bpp. The hydrogen bonding interactions in 1–3 further stabilize the whole structural frameworks and play critical roles in their constructions.  相似文献   

7.
Two novel lanthanide coordination polymers [Sm(Hdipic)(dipic)(H2O)2·4H2O]n (1) (H2dipic=2,6-pyridinedicarboxylic acid) and [Dy(Hdinic)(dinic)(phen)(H2O)·H2O]n (2) (H2dinic=2,5-pyridinedicarboxylic acid) have been synthesized under hydrothermal condition and characterized by single-crystal X-ray diffraction. The results reveal that both of them form a chain-like one-dimensional structure. The photophysical properties for the two complexes have been also reported. Complex 1 shows the characteristic luminescence of central Sm3+ while complex 2 exhibits the particular emission ascribed H2dinic ligands, which suggest the different energy transfer process takes place.  相似文献   

8.
The potassium salt of o-aminophenol-N,N,O-triacetic acid (APTA) and KMnL·H2O, KCoL·3H2O, KNiL·3H2O, KZnL·3ZH2O, Co(CoL)2·7H2O and Ni(NiL)2·8H2O(L3−:anion of APTA) have been synthesized and characterized by elementary analysis, thermogravimetric analysis, molar conductance, IR spectra, magnetic measurements and electronic spectra. The coordination environments of these metal ions have been discussed on the basis of these studies. The single crystal structure of cobalt(II)-APTA has been determined as CoL·0.5Co(H2O)6·4H2O, which contains two types of cobalt(II). One type of cobalt(II) is coordinated with six water molecules to form Co(H2O)62+, the other is chelated by APTA to form a distorted octahedron and linked into an infinite chain anion [COC6H4(OCH2COO)N(CH2COO)2]n, in which each cobalt(II) atom is linked with neighbouring cobalt(II) atoms through two carboxylate oxygen atoms of the phenoxyacetate group. Water molecules occupy interstices in the structure.  相似文献   

9.
Two polymeric complexes, [Cu2(btec)(phen)2]n·(H2O)n (1) and [Cd4(btec)2(phen)4(H2O)4]n (2) (H4btec=1,2,4,5-benzenetetracarboxylic acid; PHEN=1,10-phenanthroline), were synthesized by solvothermal reactions at 140 °C. Both complex 1 and 2 possess infinite double-chain structures, in which each Cu(II) center has a tetrahedral configuration and the Cd(II) centers adopt triangular prismatic and square-based pyramidal configurations simultaneously. The inter-chain face to face π–π interactions among the aromatic rings of phen and the hydrogen bond interactions between aqua molecules and carboxyl O atoms result in 3-D networks in the two complexes. The ESR spectra study of complex 1 shows that there is negligibly small long-range super-exchange interactions between the Cu(II) atoms via benzenecarboxylate bridging.  相似文献   

10.
The title cobalt(III) complexes have been investigated by polarized absorption and Raman spectroscopies of the single crystals. The symmetry properties of the d-electron orbitals and of the vibrational modes attributable to the Raman bands of trans(Cl2)-[CoCl2(NH3)n(H2O)4−n]Cl complexes (n = 2, 3, or 4) were examined to elucidated the peculiar observation that ligand substitution causes no splitting of the 15 200-cm−1 absorption band and the 250-cm−1 Raman band. Effects of replacing the NH3 ligand with H2O on the electronic structure, atom–atom force constants and vibrational modes of these complex ions are briefly described.  相似文献   

11.
Two homochiral metal amino-carboxylate–phosphonate hybrids, namely, [Co2Cl(S-HL)(H2O)5]Cl · H2O 1 and Sr2(S-HL)(NO3)2(H2O) · H2O 2 (S-H3L = S-HO2CC4H7NCH2PO3H2) have been synthesized by the reaction of the enantiopure S-H3L ligand with cobalt(II) chloride or strontium nitrate under acidic condition at room temperature. The structure of compound 1 features a novel 3D framework with helical chains and channels. Compound 2 has a layered structure in which the 1D chains of edge-sharing SrO8 and SrO9 polyhedra are interconnected by phosphonate ligands.  相似文献   

12.
Lewis acid/base addition between Ln(NO3)3 · 6H2O (Ln = Pr, Nd, Sm, Eu, Tb and Lu) and H2salen [H2salen = N,N′-ethylenebis(salicylideneimine)] gives rise to an array of coordination polymeric structures. Crystal structural analysis reveals that Salen effectively functions as a bridging ligand in these compounds. The size of the lanthanide ions controls the structures of these Salen lanthanide complexes. Two representative structures with one dimensional and two dimensional topologies, viz. [Pr(H2salen)(NO3)3(CH3OH)2]n (1) and [Ln(H2salen)1.5(NO3)3]n [Ln = Pr (2), Nd (3), Sm (4), Eu (5), Tb (6) and Lu (7)] are reported. Luminescent spectra of complexes 4 and 5 exhibit characteristic metal-centered emission lines. However, the characteristic luminescence of the terbium(III) ion is not observed either in solution or in the solid state of complex 6.  相似文献   

13.
Two hydrogen-bonded supramolecular compounds having the general formula [M(H2O)6][H2L] (M=MnII or CoII and H4L=1,2,4,5-benzenetetracarboxylic acid), have been newly prepared by the reaction of [M(H2O)6](ClO4)2 and [C6H2(COOH)4] (H4L), and structurally characterized by X-ray diffraction. The metal center in each compound is six-coordinated, forming an ideal octahedral geometry. Both neutral formula units make unique three-dimensional supramolecular architectures through hydrogen bonds and stabilized by electrostatic force.  相似文献   

14.
The syntheses, crystal structures and characterizations of two new divalent metal carboxylate-phosphonates, namely, Zn(H3L)·2H2O (1) and Pb(H3L)(H2O)2 (2) (H5L4-HO2C–C6H4–CH2N(CH2PO3H2)2) have been reported. Compound 1 features a 1D column structure in which the Zn(II) ions are tetrahedrally coordinated by four phosphonate oxygen atoms from four phosphonate ligands, and neighboring such 1D building blocks are further interconnected via hydrogen bonds into a 3D network. The carboxylate group of H3L anion remains non-coordinated. Compound 2 has a 2D layer structure. Pb(II) ion is 7-coordinated by four phosphonate oxygen atoms from four phosphonate ligands and three aqua ligands. The interconnection of Pb(II) ions via bridging H3L anions results in a 001 layer. The carboxylate group of the H3L anion also remains non-coordinated and is oriented toward the interlayer space. Solid state luminescent spectrum of compound 1 exhibits a strong broad blue fluorescent emission band at 455 nm under excitation at 365 nm at room temperature.  相似文献   

15.
We have calculated the optimized structures and stabilization energies for hydrated clusters of orthoboric acid molecule, B(OH)3(H2O)n (n=1–5), with a hybrid density functional approach. Although some ion-pair structures are revealed in the case of n=4 and 5 clusters, the most stable structure is found to be a non-proton-transferred form up to n=5 hydrated clusters. The calculated IR spectra of the stable B(OH)3(H2O)n of n=3–5 clusters predict small red shifts of hydrogen-bonded OH frequencies. These geometry and IR results are related to the weak acidity nature of orthoboric acid.  相似文献   

16.
使用醋酸锌,柔性的1,4-二甲基咪唑丁烷(bib)和三个刚性直链型羧酸混合配体,在溶剂热条件下合成了三个具有不同穿插结构的配合物。并通过元素分析,红外,X射线单晶衍射进行了表征。配合物 1是一个具有三种Z字链的四重穿插结构,配合物2是一个特殊的[2+2]型四重穿插结构,配合物3是一个具有双核结构单元的三重穿插结构。通过使用热重分析/微分热重和差示扫描量热(TG/DTG-DSC)技术研究了它们的热分解过程,由热重分析得出特殊的[2+2]型四重穿插结构稳定性最好,四重穿插结构比三重穿插结构稳定。使用Kissinger和Ozawa-Doyle法对配合物骨架坍塌过程进行了计算,得出配合物1-3的表观活化能分别为276.887、318.515、149.310 kJ·mol-1,可以得出配合物1-3的反应速率关系为3 > 1 > 2。从热力学和动力学的角度来说明配合物的结构稳定性。其次,还对配合物1-3的荧光性质进行了表征。  相似文献   

17.
The structure of the complex [Ni(hmt)(NCS)2(H2O)2]n, assembled by hexamethylenetetramine (hmt) and octahedral Ni(II), is reported. Crystal data: Fw 351.07, a=9.885(10) Å, b=12.06(1) Å, c=12.505(8) Å, β=114.41(4)°, V=1357(1) Å3, Z=4, space group=C2/c, T=173 K, λ(MoK)=0.71070 Å, ρcalc=1.718 gcm−1, μ=17.44 cm−1, R=0.099, Rw=0.145. The tetrahedral assembling template effect of the hmt molecule is completed by two coordination bonds and two hydrogen interactions. The UV–vis absorption spectrum of this complex [Ni(hmt)(NCS)2(H2O)2]n with a two-dimensional network is determined in the range of 5000–35000 cm−1 at room temperature. The observed spectrum is discussed and explained perfectly by the scaling radial theory proposed by us. The two-dimensional structure has no apparent effects on the d–d transitions of the central Ni(II) ion. The IR spectrum and the GT curve of the complex were also measured and clearly reflect its structural properties.  相似文献   

18.
A series of chromium(III) complexes [Cr(bipy)(HC2O4)2]Cl·3H2O (1), [Cr(phen)(HC2O4)2]Cl·3H2O (2), [Cr(phen)2(C2O4)]ClO4 (3), [Cr2(bipy)4(C2O4)](SO4)·(bipy)0.5·H2O (4) and [Mn(phen)2(H2O)2]2[Cr(phen)(C2O4)2]3ClO4·14H2O (5) were synthesized (bipy=4,4′-bipyridine, phen=1,10-phenanthroline), while the crystal structures of 1 and 3–5 have been determined by X-ray analysis. 1 and 3 are mononuclear complexes, 4 contains binuclear chromium(III) ions and 5 is a 3D supromolecule formed by complicated hydrogen bonding. 1–3 are potential molecular bricks of chromium(III) building blocks for synthesis heterometallic complexes. When we use these molecular bricks as ligands to react with other metal salts, unexpected complexes 4 and 5 are isolated in water solution. The synthesis conditions and reaction results are also discussed.  相似文献   

19.
Three novel transitionmetal compounds [Cu0.5L]n (1), {[Ni(L)2·(H2O)2]·(H2O)2}n(2), and {[Co(L)2·(H2O)2]· (H2O)2}n (3), were hydrothermally synthesized with 4-(1H-1,2,4-triazol-1-ylmethyl) benzoic acid (HL) and characterized by infrared spectroscopy, elemental analyses, single-crystal X-ray diffraction, thermal analyses, UV-Vis spectroscopy, and fluorescence spectroscopy. Structural analyses reveal that compound 1 features a one-dimensional (1D) chain, while isomorphic 2 and 3 exhibit a three-dimensional (3D) network structure with interchain hydrogen-bonding. Antifungal activities tests reveal that 1 has the highest antifungal effect on the five fungi (Fusarium graminearum, Vasa mali, Macrophoma kawatsukai, Colletotrichum gloeosporioides, and Alternaria alternate) among the three compounds. Furthermore, DNA cleavage experiments indicate that compound 1 has more efficient DNA (pUC 18) cleavage activity than compounds 2 and 3. The binding properties of the three compounds with DNA were also investigated by absorption. The results show that the three compounds can intercalate into DNA, and the interaction of compound 1 is the strongest.  相似文献   

20.
3,6,9-trioxaundecanedioic acid (3,6,9-tddaH2) reacts with Mn(CH3CO2)2·4H2O in ethanol to give [Mn(3,6,9-tdda)]·H2O (1). Recrystallization of 1 from methanol gives crystals of [Mn(3,6,9-tdda) (H2O)2]·2H2O (2). Complex 1 reacts with an ethanolic solution of 1,10-phenanthroline (phen) to give {[Mn(3,6,9-tdda)(phen)2]·3H2O·EtOH}n (3). All of the complexes are extremely water soluble. Complexes 2 and 3 were structurally characterised. The manganese(II) ion in 2 is seven coordinate, with an approximately pentagonal bipyramidal O7 coordination sphere. The axial donors are water molecules and the pentagonal plane is occupied by the diacid, acting as a pentadentate ligand through the three ethereal oxygens and one oxygen atom from each of the carboxylate functions. In complex 3 the manganese(II) ion is six-coordinate, being bound to two bidentate phenanthroline ligands and to the carboxylate oxygen atoms from two symmetry related diacids which are coordinated in a cis fashion. The structure consists of polymeric chains, with diacid ligands bridging the manganese ions. There is π-π stacking of pairs of phenanthroline ligands on adjacent chains, running along both the z and y directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号