首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Trimethylsulfonium triiodide (I) and p-xylylene-bis-(tetrahydrothiophenium) triiodide (II) were identified and determined by capillary electrophoresis with the resolution R s = 4.86 using an unmodified quartz capillary. The procedure ensures the determination of sulfur-containing organic compounds in a concentration range of 1.0 × 10?5–5.0 × 10?4 M RSD ≤ 5%). The high stability of trimethylsulfonium triiodide and p-xylylene-bis-(tetrahydrothiophenium) triiodide in chloroform and acetonitrile solutions was found by spectrophotometry. A procedure was proposed for the spectrophotometric determination of compounds I and II as ion associates of sulfur-containing cations with a sulfophthalein dye, Bromocresol Purple (c min (I) = 1.32 × 10?5 M, c min (II) = 7.1 × 10?6 M, RSD = 5%), and by the characteristic absorption of the triiodide anion in acetonitrile (c min (I) = 3.18 × 10?6 M, c min (II) = 2.76 × 10?6 M, RSD <-3%).  相似文献   

2.
Potentiometric sensors with plasticized polymer membranes based on organic ion exchangers, tetraalkylammonium dodecyl sulfates (benzyldimethyldodecylammonium, benzyldimethyltetradecylammonium, dimethyldistearylammonium), have been proposed for the determination of quaternary ammonium salts in model solutions and KATAPAV technical solutions. The thermal stability, composition, and solubility product have been estimated. It has been shown that ion associates are stable to 60?C70°C, K S varies in the range from 2 × 10?8 to 5 × 10?10. The basic electrochemical parameters of the sensors have been determined as well, such as linearity ranges of the electrode function (5 × 10?5 (5 × 10?6)?1 × 10?2 (1 × 10?3) M) and slopes of the electrode functions (47?C59 mV/pc), response time (60?C90 sec), potential drift (2?C3 mV/day), operation period (3?C4 months), limits of detection for tetramethylammonium salts (1 × 10?5?4 × 10?7 M).  相似文献   

3.
Novel films consisting of multi-walled carbon nanotubes (MWCNTs) were fabricated by means of chemical vapor deposition with decomposition of either acetonitrile (ACN) or benzene (BZ) using ferrocene as catalyst. The electrochemical responses of MWCNT-based films towards the ferrocyanide/ferricyanide, [Fe(CN)6]3?/4? redox couple were probed by means of cyclic voltammetry and electrochemical impedance spectroscopy at 25.0?±?0.5?°C. Both MWCNT-based films exhibit Nernstian response towards [Fe(CN)6]3?/4? with some slight kinetic differences. Namely, heterogeneous electron transfer rate constants lying in ranges of 2.69?×?10?2?C1.7?×?10?3 and 9.0?×?10?3?C2.6?×?10?3?cm·s?1 were obtained at v?=?0.05?V·s?1 for MWCNTACN and MWCNTBZ, respectively. The detection limit of MWCNTACN, estimated to be about 4.70?×?10?7?mol·L?1 at v?=?0.05?V·s?1, tends to become slightly poorer with the increase of the scan rate, namely at v?=?0.10?V·s?1 the detection limit of 1.70?×?10?6?mol·L?1 was determined. Slightly poorer response ability was exhibited by MWCNTBZ; specifically the detection limits of 1.57?×?10?6 and 4.35?×?10?6?mol·L?1 were determined at v?=?0.05 and v?=?0.10?V·s?1, respectively. The sensitivities of MWCNTACN and MWCNTBZ towards [Fe(CN)6]3?/4? were determined as 1.60?×?10?7 and 1.51?×?10?7?A·L·mol?1·cm?2, respectively. The excellent electrochemical performance of MWCNTACN is attributed to the presence of incorporated nitrogen in the nanotube??s structure.  相似文献   

4.
The solubility (m S) of l-methionine in water was measured at 298.2 K and pressures up to 200 MPa. The data were fitted to the equation ln(m S/mol·kg?1) = ?4.62 × 10?6 (p/MPa)2 + 2.65 × 10?3 (p/MPa) ? 0.970 with a standard deviation of σ(ln m S) = 0.002. The pressure coefficient of the logarithm of solubility (?ln m S/?p) T was thermodynamically estimated to be (2.62 ± 0.34) × 10?3 MPa?1 at 0.10 MPa using several parameters such as partial molar volume and activity coefficient of l-methionine in water and molar volume of solid l-methionine. The resulting value agrees well with the second term on the right-hand side of the fitted equation above, indicating the reliability of the high-pressure solubility measurements. The value of (?ln m S/?p) T also was compared with those of other amino acids.  相似文献   

5.
Nuclear magnetic resonance and infrared spectroscopies were used to unravel the controversies regarding the structures of calcichrome and calcion. Together with the identification of the products from selective chemical cleavage reactions, these data indicate that structures of both compounds are equivalent with a molecular formula of C20H14N2O15S4·3H2O (2,8,8′-trihydroxy-1,1′-azonaphthelene-3,6,3′,6′-tetrasulfonic acid). The compound has two titratable phenolic protons in aqueous solution with pKa values of 7.19 ± 0.05 and 11.63 ± 0.05 at 25 ° C. As a ligand, the compound forms a colored complex with calcium(II) at a 1:1 stoichiometric ratio (pH 12.3) with a formation constant of 8.0 × 103 at 25 ° C. The free form of the ligand at pH 12.3 has a molar maximum molar absorptivity of 1.44 × 104 l mol?1 cm?1 at 599 nm, whereas the complexed form has a maximum molar absorptivity of 1.37 × 104 l mol? cm?1 at 522 nm.  相似文献   

6.
Fluorometric methods for the determination of phosphate (1.5 × 10?6–3.1 × 10?6M), diphosphate (7.0 × 10?7–2.0 × 10?6M), and triphosphate (2.0 × 10?7–2.7 × 10?6M) are described. The analytical procedure is based on the inhibition of polyphosphate ions on the oxidation of pyridoxal 2-pyridylhydrazone (PPH) by hydrogen peroxide, catalyzed by low concentrations of lead(II) ions. The reactions are followed by means of the rate of appearance of the fluorescence (λex = 355 nm, λem = 425 nm). The effect of the variables is studied. The kinetic parameters of the reactions are reported and rate equations are suggested. The results are interpreted according to the discernment of the chemistry of complex formations.  相似文献   

7.
An ionic liquid (i.e., 1‐butyl‐3‐methylimidazolium hexafluorophosphate, BMIMPF6)‐single‐walled carbon nanotube (SWNT) gel modified glassy carbon electrode (BMIMPF6‐SWNT/GCE) is fabricated. At it the voltammetric behavior and determination of p‐nitroaniline (PNA) is explored. PNA can exhibit a sensitive cathodic peak at ?0.70 V (vs. SCE) in pH 7.0 phosphate buffer solution on the electrode, resulting from the irreversible reduction of PNA. Under the optimized conditions, the peak current is linear to PNA concentration over the range of 1.0×10?8–7.0×10?6 M, and the detection limit is 8.0×10?9 M. The electrode can be regenerated by successive potential scan in a blank solution for about 5 times and exhibits good reproducibility. Meanwhile, the feasibility to determine other nitroaromatic compounds (NACs) with the modified electrode is also tested. It is found that the NACs studied (i.e., p‐nitroaniline, p‐nitrophenol, o‐nitrophenol, m‐nitrophenol, p‐nitrobenzoic acid, and nitrobenzene) can all cause sensitive cathodic peaks under the conditions, but their peak potentials and peak currents are different to some extent. Their peak currents and concentrations show linear relationships in concentration ranges with about 3 orders of magnitude. The detection limits are 8.0×10?9 M for p‐nitroaniline, 2.0×10?9 M for p‐nitrophenol, 5.0×10?9 M for o‐nitrophenol, 5.0×10?9 M for m‐nitrophenol, 2.0×10?8 M for p‐nitrobenzoic acid and 8.0×10?9 M for nitrobenzene respectively. The BMIMPF6‐SWNT/GCE is applied to the determination of NACs in lake water.  相似文献   

8.
Heat capacities of guayule and natural rubbers were measured between 228 and 333 K using a DuPont 990 Differential Scanning Calorimeter. Data obtained were fitted to a straight line. We obtained the following equations where Cp is given in cal g?1 K?1. For guayule rubber, Cp = 22.6152 × 10?4T + 0.7731 (correlation factor = 0.99). For natural rubber. Cp = 16.9195 × 10?4T + 0.9209 (correlation factor = 0.98). Furthermore, some theoretical considerations and instrumental conditions were analyzed so that the determinations of heat capacities could be improved.  相似文献   

9.
The photoexcited triplet state of phenazine in toluene glasses at 35 K is investigated by light modulation-EPR spectroscopy. From the transient EPR spectra and the kinetics in the three canonical orientations (p = x, y, z) the rate parameters are determined. Thus, the depopulation rate constants kp, the anisotropic spin lattice relaxation rate constants Wp, and the ratios between the population constants Ap are calculated: kx = (2.2 ± 0.3) × 102 s?1, ky = (0.21 ± 0.04) × 102 s?1, kz = (0.06 ± 0.03) × 102 s?1, Wx = (8.6 ± 0.9) × 103 s?1, Wy = (11.0 ± 1.0) × 103 s?1, Wz = (14.0 ± 1.4) × 103 s?1, and Ax: Ay:Az ≈ 1:0.04:0.02. It is concluded therefore that the in-plane spin state |τx > is the active one.  相似文献   

10.
The heat of immersion in water was measured at 25°C for three iron(III) oxides using a twin-type microcalorimeter. One of the samples was commercial α-Fe2O3 (sample C) and the other two (samples M and F) were prepared by calcining magnetite and iron(III) hydroxide in air at various temperatures, Tp, from 300 to 700°C. The samples were evacuated at outgassing temperature, To, between room temperature and 500°C at a pressure of 1 × 10?2?2.7 × 10?2N m?2 for 6 h. The heat of immersion, hi(J m?2), of samples C and M increased with an increase in To and showed the maximum hi at To =400°C, while sample F did not show the maximum up to To =500°C. The systematic correlation was not observed between hi and Tp of sample F. The heat of reproduction of the surface hydroxyl group on sample F was approximately estimated as 6.6 × 104 J mole?1 H2O.  相似文献   

11.
The use of an indirect potentiometric method with the glass electrode in a 3?/HN3/UO22+ solution leads to ligand number n?, at several azide concentrations, at 2.0M ionic strength (NaClO4), aqueous medium and 25.0±0.1°C. The analysis of data under conditions where hydrolysis is avoided leads to the six overall stepwise constants: β1 = 1.39 × 102M?1; β2 = 8.26 × 103M?2; β3 = 4.9 × 105M?3; β4 = 7.1 × 105M?4; β5 = 2.3 × 106M?5; β6 = 1.2 × 107M?6.  相似文献   

12.
At pH 4.5 (citrate buffer), D -gluconhydroximo-lactone ( 2 ), the N-methylurethane 3 and the N-phenylurethane 4 inhibit competitively the hydrolysis of p-nitrophenyl β-D -glucopyranoside by emulsin. The IC50 values of 2, 3 , and 4 were 1.6 × 10?4, 1.0 × 10?4, and 5.8 × 10?6 M , respectively. The Ki values of 2 and 4 were 9.8 × 10?5 and 2.3 × 10?6 M , respectively, while D-glucono-1,5-lactone ( 1 ) showed IC50 = 1.1 × 10?4 M and Ki = 3.7 × 10?5 M .  相似文献   

13.
Chlorophyll-b in glassy solution has a spin-polarized lowest triplet state at and above 77 K. The magnitude of the effect is different for MTHF and ethanol as solvents, in contrast to what is found for the porphin free base. Chlorophyll-a does not exhibit spin-polarization under identical conditions as for chlorophyll-b. Zero-field parameters are found to be:chlorophyll-a (MTHF) D = (281 ± 6) × 10?4 cm?1; E = (39 ± 3) × 10?4 cm?1;chlorophyll-b (MTHF) D = (289 ± 4) × 10?4 cm?1; E = (49 ± 3) × 10?4 cm?1,From ESR signal kinetics it follows that for chlorophyll-b, population and depopulation mainly involve the spin level y?, describing a spin moving in a plane perpendicular to the molecular plane:Py ? Px ? Pz; kx = 240 ± 40 s?1; ky = 600 ± 120 s?1; kz ? 75 s?1,where Pi and ki denote populating and decay rates. Thus, the kinetic scheme for the chlorophyll triplet is different from that of porphyrins with heavier metal ions, but very similar to that of the porphin free base. The spin-lattice relaxation time is found to be anisotropic and shorter than the decay rates of individual spin levels. Nevertheless, spin polarization can be observed, essentially because the ESR signal amplitude depends on population differences.  相似文献   

14.
In this work, we report the fabrication of a sensitive electrochemical DNA impedance biosensor for the detection of sequence-specific target DNA. p-Aminobenzoic acid was first immobilized on the surface of the electrode modified with single walled carbon nanotubes with carboxylic acid groups (SWCNTs) by cyclic voltammetry (CV). A single-stranded DNA probe with a NH2 group at the end (H2N-ssDNA) was then covalently immobilized on the surface of polymeric film at room temperature. The impedance measurement was performed in a solution containing 5 mM K3[Fe(CN)6]/K4[Fe(CN)6]. The change of interfacial charge transfer resistance (R CT) was confirmed the hybrid formation. The difference of R CT was linear with the logarithm of complementary oligonucleotides concentrations in the range of 1.0 × 10?12 to 1.0 × 10?7 M, with a detection limit of 3.5 × 10?13 M (S/N = 3).  相似文献   

15.
Iodide is determined after oxidation with nitrous acid in 5 M hydrochloric acid to ICl?2. The ion-pair formed with rhodamine B is extracted into toluene and measured spectrophotometrically (0.5–5 × 10?5 M) or spectrofluorimetrically (1–10 × 10?6 M). The relative standard deviations were 1.8% for the determination of 5 × 10?6 M iodide (n = 5) by spectrofluorimetry and 2.3% (n = 50) for 1 × 10?5 M iodide by spectrophotometry. Periodate, iodate and iodine responded exactly as iodide.  相似文献   

16.
Absolute rate constants for the reaction of O(3P) atoms with n-butane (k2) and NO(M  Ar)(k3) have been determined over the temperature range 298–439 K using a flash photolysis-NO2 chemiluminescence technique. The Arrhenius expressions obtained were k2 = 2.5 × 10?11exp[-(4170 ± 300)/RT] cm3 molecule?1 s?1, k3 = 1.46 × 10?32 exp[940 ± 200)/ RT] cm6 molecule?2 s?1, with rate constants at room temperature of k2 = (2.2 ± 0.4) × 10?14 cm3 molecule?1 s?1 and k3 = (7.04 ± 0.70)×10?32 cm6 molecule?2 s?1. These rate constants are compared and discussed with literature values.  相似文献   

17.
The charge-transfer complex formed by the interaction of an aliphatic amine, such as n-butylamine (nBA), and carbon tetrachloride (CCl4) in dimethylsulphoxide (DMSO) initiates polymerization of methyl methacrylate (MMA) at 30°. The rate of polymerization is given by Rp = k[MMA]0.83 [nBA]0.5 [CCl4]0.5 when [CCl4]/[nBA] is ? 1. When [CCl4]/[nBA] > 1, Rp is independent of [CCl4] and Rp = k[MMA]1.46 [nBA]0.5. The average rate constants are (1.42 ± 0.05) × 10?6 1 mol?1 sec?1 in terms of MMA and (2.20 ± 0.06) × 10?6 sec?1 at 30° for higher and lower concentration of carbon tetrachloride respectively. A charge-transfer mechanism for polymerization is suggested.  相似文献   

18.
J.G. Leipoldt  H. Meyer 《Polyhedron》1985,4(9):1527-1531
The reaction of Cl?, Br?, I?, Co(CN)63? and NCS? with meso-tetrakis (p-trimethylammoniumphenyl)porphinatodiaquorhodate(III), [RhTAPP(H2O)2]5+, has been studied at 15, 25 and 35°C in 0.1 M [H+] with μ = 1.00 M (NaNO3). The value of the acidity constant, Kal, at 25°C is 4.39 × 10?9 M. The reactions are first order in anion concentration up to 0.9 M. The values of the stability constants, K1, and the second order rate constants, k1, for the reaction with Cl?, Br?, I?, Co(CN)63? and NCS? are respectively 0.23 M?1 and 2.5 × 10?3 M?1 s?1, 1.1 M?1 and 6.92 × 10?3 M?1 s?1, 40.0 M?1 and 17.0 × 10?3 M?1 s?1, 550 M?1 and 20.0 × 10?3 M?1 s?1, 3400 M?1 and 20.9 × 10?3 M?1 s?1. The porphine greatly labilizes the Rh(III). There has been about a 500-fold increase in the rate constant for substitution compared to that of [Rh(NH3)5H2O]3+. The substitution rates are however about the same as for [Rh(TPPS)(H2O)2]3?, indicating that the overall charge on the complex plays only a minor role. The kinetic results indicate that dissociative activation is occurring in these reactions.  相似文献   

19.
The study of D(?)-ribose complexing with calcium in aqueous solutions less than 1.64 × 10?1M by potentiometric measurements with a calcium selective electrode afforded the value of K1 = 1.70 liters × mole?1 (SD = 1.05 × 10?3). Numerical analysis indicated that complex species with 1:1 and 1:2 calcium to D(-)-ribose ratios are present simultaneously: k1 = 1.13 liters × mole?1 and K2 = 8.47 liters × mole?1 (SD = 0.95 × 10?3).In methanolic medium 1.24 × 10?2M with regard to calcium chloride both stoichiometric proportions were evidenced. A large error accompanying the stability constant K1 = 28 kg × mole?1 (RSD = 82%) renders unreasonable the K2 value obtained from the product K1 × K2 = 96.5 kg2 × mole?2.The results are discussed with respect to the data published for more concentrated (1.27 M) aqueous solutions obtained on the basis of 1H-NMR spectroscopic investigations.  相似文献   

20.
The ionic conductivity of polycrystalline Li7BiO6 pellets has been measured by complex impedence method. The conductivity is 5.7 × 10?3 (Ω cm)?1 and 300°C and 3.8 × 10?6 (Ω cm)?1 at 100°C. Li7BiO6 is the best lithium conductor among the structurally related LinMO6 compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号