首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
We demonstrate the possibility of creating and controlling an ideal and trimerized optical Kagomé lattice, and study the low temperature physics of various atomic gases in such lattices. In the trimerized Kagomé lattice, a Bose gas exhibits a Mott transition with fractional filling factors, whereas a spinless interacting Fermi gas at 2/3 filling behaves as a quantum magnet on a triangular lattice. Finally, a Fermi-Fermi mixture at half-filling for both components represents a frustrated quantum antiferromagnet with a resonating-valence-bond ground state and quantum spin liquid behavior dominated by a continuous spectrum of singlet and triplet excitations. We discuss the method of preparing and observing such a quantum spin liquid employing molecular Bose condensates.  相似文献   

2.
In the absence of a confining potential, the boson-Hubbard model exhibits a superfluid to Mott insulator quantum phase transition at commensurate fillings and strong coupling. We use quantum Monte Carlo simulations to study the ground state of the one-dimensional bosonic Hubbard model in a trap. Some, but not all, aspects of the Mott insulating phase persist. Mott behavior occurs for a continuous range of incommensurate fillings, very different from the unconfined case, and the establishment of the Mott phase does not proceed via a traditional quantum phase transition. These results have important implications for interpreting experiments on ultracold atoms on optical lattices.  相似文献   

3.
We have studied interacting and noninteracting quantum degenerate Fermi gases in a three-dimensional optical lattice. We directly image the Fermi surface of the atoms in the lattice by turning off the optical lattice adiabatically. Because of the confining potential, gradual filling of the lattice transforms the system from a normal state into a band insulator. The dynamics of the transition from a band insulator to a normal state is studied, and the time scale is measured to be an order of magnitude larger than the tunneling time in the lattice. Using a Feshbach resonance, we increase the interaction between atoms in two different spin states and dynamically induce a coupling between the lowest energy bands. We observe a shift of this coupling with respect to the Feshbach resonance in free space which is anticipated for strongly confined atoms.  相似文献   

4.
We study the quantum phase transition between a band (“ionic”) insulator and a Mott-Hubbard insulator, realized at a critical value in a bipartite Hubbard model with two inequivalent sites, whose on-site energies differ by an offset . The study is carried out both in D=1 and D=2 (square and honeycomb lattices), using exact Lanczos diagonalization, finite-size scaling, and Berry's phase calculations of the polarization. The Born effective charge jump from positive infinity to negative infinity previously discovered in D=1 by Resta and Sorella is confirmed to be directly connected with the transition from the band insulator to the Mott insulating state, in agreement with recent work of Ortiz et al. In addition, symmetry is analysed, and the transition is found to be associated with a reversal of inversion symmetry in the ground state, of magnetic origin. We also study the D=1 excitation spectrum by Lanczos diagonalization and finite-size scaling. Not only the spin gap closes at the transition, consistent with the magnetic nature of the Mott state, but also the charge gap closes, so that the intermediate state between the two insulators appears to be metallic. This finding, rationalized within Hartree-Fock as due to a sign change of the effective on-site energy offset for the minority spin electrons, underlines the profound difference between the two insulators. The band-to-Mott insulator transition is also studied and found in the same model in D=2. There too we find an associated, although weaker, polarization anomaly, with some differences between square and honeycomb lattices. The honeycomb lattice, which does not possess an inversion symmetry, is used to demonstrate the possibility of an inverted piezoelectric effect in this kind of ionic Mott insulator. Received 21 May 1999  相似文献   

5.
The Mott transition is one of the fundamental issues in condensed matter physics,especially in the system with antiferromagnetic long-range order.However,such a transition is rare in quantum spin liquid(QSL) systems without long-range order.Here we report the experimental pressure-induced insulator to metal transition followed by the emergence of superconductivity in the QSL candidate NaYbSe_2 with a triangular lattice of 4 f Yb~(3+) ions.Detail analysis of transport properties in metallic state shows an evolution from non-Fermi liquid to Fermi liquid behavior when approaching the vicinity of superconductivity.An irreversible structure phase transition occurs around 11 GPa,which is revealed by the x-ray diffraction.These results shed light on the Mott transition in the QSL systems.  相似文献   

6.
In this Letter we study various spin correlated insulating states of F=2 cold atoms in optical lattices. We find that the effective spin exchange interaction due to virtual hopping contains an octopole coupling between two neighboring lattice sites. Depending on scattering lengths and numbers of particles per site the ground states are either rotationally invariant dimer or trimer Mott insulators or insulating states with various spin orders. Three spin-ordered insulating phases are ferromagnetic, cyclic, and nematic Mott insulators. We estimate the phase boundaries for states with different numbers of atoms per lattice site.  相似文献   

7.
We study the superfluid to Mott‐insulator transition of bosons in an optical anisotropic lattice by employing the Bose‐Hubbard model living on a two‐dimensional lattice with anisotropy parameter κ. The compressible superfluid state and incompressible Mott‐insulator (MI) lobes are efficiently described analytically, using the quantum U(1) rotor approach. The ground state phase diagram showing the evolution of the MI lobes is quantified for arbitrary values of κ, corresponding to various kind of lattices: from square, through rectangular to almost one‐dimensional.  相似文献   

8.
We calculate the superfluid transition temperature for a two-component 3D Fermi gas in a 1D tight optical lattice and discuss a dimensional crossover from the 3D to quasi-2D regime. For the geometry of finite size discs in the 1D lattice, we find that even for a large number of atoms per disc the critical effective tunneling rate for a quantum transition to the Mott insulator state can be large compared to the loss rate caused by three-body recombination. This allows the observation of the Mott transition, in contrast to the case of Bose-condensed gases in the same geometry.  相似文献   

9.
光晶格中玻色-爱因斯坦凝聚体的自旋和磁研究   总被引:1,自引:0,他引:1  
张卫平 《物理》2003,32(2):76-79
近年应用光晶格(optical lattice)控制原子玻色-爱因斯坦凝聚体(BEC)的研究取得了突破性的进展。德国Munich研究小组首次在三维光晶格中观察到了超冷原子从BEC超流状态向Mott insulator状态的量子相变。这样的量子相变现象不仅具有重大的理论研究价值,而且为BEC的实际应用提供了新的途径。文章介绍了作者近来在光晶格中BEC的自旋和磁特性方面的一些研究进展,并探讨了它们在磁传感器及量子计算中的可能应用。  相似文献   

10.
Using the density matrix renormalization group method, we evaluate the spin and charge gaps of alkaline-earth fermionic atoms in a periodic one-dimensional optical superlattice. The number of delocalized atoms is equal to the lattice size and we consider an antiferromagnetic coupling between delocalized and localized atoms. We found a quantum phase transition from a Kondo insulator spin liquid state without confining potential to a charge-gapped antiferromagnetic state with nonzero potential. For each on-site coupling, there is a critical potential point for which the spin gap vanishes and its value increases linearly with the local interaction.  相似文献   

11.
12.
We formulate a U(1) gauge theory of the Hubbard model in the slave-rotor representation. From this formalism it is argued that spin liquid phases may exist near the Mott transition in the Hubbard model on triangular and honeycomb lattices at half filling. The organic compound kappa-(BEDT-TTF)2Cu2(CN)3 is a good candidate for the spin liquid state on a triangular lattice. We predict a highly unusual temperature dependence for the thermal conductivity of this material.  相似文献   

13.
A gas of strongly interacting single-species (spinless) p-orbital fermionic atoms in 2D optical lattices is proposed and studied. Several interesting new features are found. In the Mott limit on a square lattice, the gas is found to be described effectively by an orbital exchange Hamiltonian equivalent to a pseudospin-1/2 XXZ model. For a triangular, honeycomb, or kagome lattice, the orbital exchange is geometrically frustrated and described by a new quantum 120 degrees model. We determine the orbital ordering on the kagome lattice, and show how orbital wave fluctuations select ground states via the order by disorder mechanism for the honeycomb lattice. We discuss experimental signatures of various orbital ordering.  相似文献   

14.
15.
We consider extended Hubbard models with repulsive interactions on a honeycomb lattice, and the transitions from the semimetal to Mott insulating phases at half-filling. Because of the frustrated nature of the second-neighbor interactions, topological Mott phases displaying the quantum Hall and the quantum spin Hall effects are found for spinless and spin fermion models, respectively. The mean-field phase diagram is presented and the fluctuations are treated within the random phase approximation. Renormalization group analysis shows that these states can be favored over the topologically trivial Mott insulating states.  相似文献   

16.
We study superfluid and Mott insulator phases of cold spin-1 Bose atoms with antiferromagnetic interactions in an optical lattice, including a usual polar condensate phase, a condensate of singlet pairs, a crystal spin nematic phase, and a spin singlet crystal phase. We suggest a possibility of exotic fractionalized phases of spinor Bose-Einstein condensates and discuss them in the language of Z2 lattice gauge theory.  相似文献   

17.
We analyze the stability of superfluid currents in a system of strongly interacting ultracold atoms in an optical lattice. We show that such a system undergoes a dynamic, irreversible phase transition at a critical phase gradient that depends on the interaction strength between atoms. At commensurate filling, the phase boundary continuously interpolates between the classical modulation instability of a weakly interacting condensate and the equilibrium quantum phase transition into a Mott insulator state at which the critical current vanishes. We argue that quantum fluctuations smear the transition boundary in low dimensional systems. Finally we discuss the implications to realistic experiments.  相似文献   

18.
We report on the direct observation of the transition from a compressible superfluid to an incompressible Mott insulator by recording the in-trap density distribution of a Bosonic quantum gas in an optical lattice. Using spatially selective microwave transitions and spin-changing collisions, we are able to locally modify the spin state of the trapped quantum gas and record the spatial distribution of lattice sites with different filling factors. As the system evolves from a superfluid to a Mott insulator, we observe the formation of a distinct shell structure, in good agreement with theory.  相似文献   

19.
We propose an experimental scheme to observe spin Hall effects with cold atoms in a light-induced gauge potential. Under an appropriate configuration, the cold atoms moving in a spatially varying laser field experience an effective spin-dependent gauge potential. Through numerical simulation, we demonstrate that such a gauge field leads to observable spin Hall currents under realistic conditions. We also discuss the quantum spin Hall state in an optical lattice.  相似文献   

20.
We study the superfluid-to-Mott insulator transition of bosons in a two-legged ladder optical lattice of a type accessible in current experiments on double-well optical lattices. The zero-temperature phase diagram is mapped out, with a focus on its dependence upon interchain hopping and the tilt between double wells. We find that the unit-filling Mott phase exhibits a nonmonotonic behavior as a function of the tilt parameter, producing a reentrant phase transition between the Mott insulator and superfluid phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号