首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Engin Asav 《Talanta》2009,78(2):553-987
In this study, a new biosensor based on the inhibition of tyrosinase for the determination of fluoride is described. To construct the biosensor tyrosinase was immobilized by using gelatine and cross-linking agent glutaraldehyde on a Clark type dissolved oxygen (DO) probe covered with a teflon membrane which is sensitive for oxygen. The phosphate buffer (50 mM, pH 7.0) at 30 °C were established as providing the optimum working conditions. The method is based on the measurement of the decreasing of dissolved oxygen level of the interval surface that related to fluoride concentration added into reaction medium in the presence of catechol. Inhibitor effect of fluoride results in decrease in dissolved oxygen concentration. The biosensor response depends linearly on fluoride concentration between 1.0 and 20 μM with a response time of 3 min.In the characterization studies of the biosensor some parameters such as reproducibility, substrate specificity and storage stability were carried out. From the experiments, the average value (x), Standard deviation (S.D) and coefficient of variation (C.V %) were found as 10.5 μM, ± 0.57 μM, 5.43%, respectively for 10 μM fluoride standard.  相似文献   

2.
Developing a biosensor which is capable of simultaneously monitoring l-Dopa levels in multiple samples besides requiring small reaction volume is of great value. The present study describes the detection of l-Dopa using tyrosinase enzyme extracted from Amorphophallus campanulatus and immobilized on the surface of the microplate wells. Among the different approaches used for immobilizing tyrosinase onto the microplate wells, glutaraldehyde treatment was found to be most effective. Besides enzyme activity, ESEM–EDS (environmental scanning electron microscope–energy dispersive system) and Atomic Force Microscopy (AFM) were also carried out to confirm the immobilization of tyrosinase enzyme onto the microplate well surface. This immobilized biocomponent was then integrated with an optical transducer for l-Dopa detection and it showed good reproducibility. The sensing property of the system was studied by measuring the initial rate of dopachrome formation at 475 nm. The calibration plot gave a linear range of detection from 10–1000 μM and the detection limit was calculated to be 3 μM. The immobilized biocomponent was stable for 41 days and was reused up to nine times. Spiked samples (blood plasma) were also analyzed using this biocomponent. This microplate based biosensor thus provides a convenient system for detection of multiple samples in a single run.  相似文献   

3.
We report the synthesis and the electrochemical properties of hybrid films made of zinc oxide (ZnO) and Meldola's blue dye (MB) using cyclic voltammetry (CV). MB/ZnO hybrid films were electrochemically deposited onto glassy carbon, gold and indium tin oxide-coated glass (ITO) electrodes at room temperature (25 ± 2 °C) from the bath solution containing 0.1 M Zn(NO3)2, 0.1 M KNO3 and 1 × 10−4 M MB. The surface morphology and deposition kinetics of MB/ZnO hybrid films were studied by means of scanning electron microscopy (SEM), atomic force microscopy (AFM) and electrochemical quartz crystal microbalance (EQCM) techniques, respectively. SEM and AFM images of MB/ZnO hybrid films have revealed that the surfaces are well crystallized, porous and micro structured. MB molecules were immobilized and strongly fixed in a transparent inorganic matrix. MB/ZnO hybrid films modified glassy carbon electrode (MB/ZnO/GC) showed one reversible redox couple centered at formal potential (E0′) −0.12 V (pH 6.9). The surface coverage (Γ) of the MB immobilized on ZnO/GC was about 9.86 × 10−12 mol cm−2 and the electron transfer rate constant (ks) was determined to be 38.9 s−1. The MB/ZnO/GC electrode acted as a sensor and displayed an excellent specific electrocatalytic response to the oxidation of nicotinamide adenine dinucleotide (NADH). The linear response range between 50 and 300 μM NADH concentration at pH 6.9 was observed with a detection limit of 10 μM (S/N = 3). The electrode was stable during the time it was used for the full study (about 1 month) without a notable decrease in current. Indeed, dopamine (DA), ascorbic acid (AA), acetaminophen (AP) and uric acid (UA) did not show any interference during the detection of NADH at this modified electrode.  相似文献   

4.
The immobilization of tyrosinase onto glutaraldehyde activated streptavidine magnetic particles and subsequent retention onto a magnetized carbon paste electrode for the amperometric assay of tyrosinase inhibitors is described. Tyrosine was used as substrate as it is the first substrate in the melanogenesis process. The sensing mode is based on monitoring the decrease of the amperometric signal corresponding to the electrochemical reduction of dopaquinone enzymatically generated. This current decrease is due to the presence of inhibitors acting directly on the enzyme or inhibitors acting on the product of the enzymatic reaction, i.e. dopaquinone. The methodology is designed for the evaluation of the inhibitory potency of the most frequently used active substances in cosmetic marketed products against hyperpigmentation such as kojic acid, azelaic acid and benzoic acid. These compounds bind to the tyrosinase active center. Ascorbic acid is also investigated as it interrupts the synthesis pathway of melanin by reducing the melanin intermediate dopaquinone back to l-dopa. By comparing the obtained IC50, under the same experimental conditions, the order of their inhibitory potency was: kojic acid (IC50 = 3.7 × 10−6 M, Ki = 8.6 × 10−7 M), ascorbic acid (IC50 = 1.2 × 10−5 M), benzoic acid (IC50 = 7.2 × 10−5 M, Ki = 2.0 × 10−5 M) and azelaic acid (IC50 = 1.3 × 10−4 M, Ki = 4.2 × 10−5 M) in close agreement with literature spectrophotometric inhibition data using the soluble tyrosinase.  相似文献   

5.
Gha-Young Kim 《Talanta》2007,71(1):129-135
A poly(vinyl alcohol) film cross-linked with glutaraldehyde (PVA-GA) was introduced to the surface of a tyrosinase-based carbon paste electrode. The coated PVA-GA film was beneficial in terms of increasing the stability and reproducibility of the enzyme electrode. The electrode showed a sensitive current response to the reduction of the o-quinone, which was the oxidation product of phenol, by the tyrosinase, in the presence of oxygen. The effects of the PVA and PVA-GA coating, the pH, and the GA:PVA ratio on the current response were investigated. The sensitivity of the PVA-GA-Tyr electrode was 130.56 μA/mM (1.8 μA/μM cm2) and the linear range of phenol was 0.5-100 μM. At a higher concentration of phenol (>100 μM), the current response showed the Michaelis-Menten behavior. Using the PVA-GA-Tyr electrode, a two-electrode system was tested as a prototype sensor for portable applications.  相似文献   

6.
Trichosporon jirovecii yeast cells are used for the first time as a source of l-cysteine desulfhydrase enzyme (EC 4.4.1.1) and incorporated in a biosensor for determining l-cysteine. The cells are grown under cadmium stress conditions to increase the expression level of the enzyme. The intact cells are immobilized on the membrane of a solid-state Ag2S electrode to provide a simple l-cysteine responsive biosensor. Upon immersion of the sensor in l-cysteine containing solutions, l-cysteine undergoes enzymatic hydrolysis into pyruvate, ammonia and sulfide ion. The rate of sulfide ion formation is potentiometrically measured as a function of l-cysteine concentration. Under optimized conditions (phosphate buffer pH 7, temperature 37 ± 1 °C and actual weight of immobilized yeast cells 100 mg), a linear relationship between l-cysteine concentration and the initial rate of sulfide liberation (dE/dt) is obtained. The sensor response covers the concentration range of 0.2-150 mg L−1 (1.7-1250 μmol L−1) l-cysteine. Validation of the assay method according to the quality control/quality assurance standards (precision, accuracy, between-day variability, within-day reproducibility, range of measurements and lower limit of detection) reveals remarkable performance characteristics of the proposed biosensor. The sensor is satisfactorily utilized for determination of l-cysteine in some pharmaceutical formulations. The lower limit of detection is ∼1 μmol L−1 and the accuracy and precision of the method are 97.5% and ±1.1%, respectively. Structurally similar sulfur containing compounds such as glutathione, cystine, methionine, and d-cysteine do no interfere.  相似文献   

7.
A novel inorganic-organic hybrid titania sol-gel nanocomposite film was prepared to fabricate a sensitive tyrosinase biosensor for the amperometric detection of trace phenolic compounds without additional electron mediators. Acetylacetone worked as a complexing ligand to chelate with Ti atom in the synthesis process, and the pH of the titania solution could be adjusted to the value which was optimum for retaining tyrosinase activity and such a membrane was stably attached on to the surface of a glassy carbon electrode (GCE). This titania matrix could supply a good environment for enzyme loading, which resulted in a high sensitivity of 15.78 μA μM−1 cm−2 for monitoring phenols with a detection limit of 1×10−8 M at a signal-to-noise ratio of 3. The TiO2 sol-gel derived biosensor exhibited a fast response less than 10 s and a good stability for more than 2 months.  相似文献   

8.
A phenol biosensor was developed based on the immobilization of tyrosinase on the surface of modified magnetic MgFe2O4 nanoparticles. The tyrosinase was first covalently immobilized to core-shell (MgFe2O4-SiO2) magnetic nanoparticles, which were modified with amino group on its surface. The resulting magnetic bio-nanoparticles were attached to the surface of carbon paste electrode (CPE) with the help of a permanent magnet. The immobilization matrix provided a good microenvironment for the retaining of the bioactivity of tyrosinase. Phenol was determined by the direct reduction of biocatalytically generated quinone species at −150 mV versus SCE. The resulting phenol biosensor could reach 95% of steady-state current within 20 s and exhibited a high sensitivity of 54.2 μA/mM, which resulted from the high tyrosinase loading of the immobilization matrix. The linear range for phenol determination was from 1 × 10−6 to 2.5 × 10−4 M with a detection limit of 6.0 × 10−7 M obtained at a signal-to-noise ratio of 3. The stability and the application of the biosensor were also evaluated.  相似文献   

9.
An enzymatic amperometric electrode with extended analytical range and improved stability for oxalate determination has been developed. Glutarlaldehyde/mucin/carbopol matrix was used for the crosslinking of the enzyme between polymeric membranes to form a classical laminate construction (sandwich) and compared with the glutaraldehyde/mucin/enzyme and glutaraldehyde/albumin/enzyme.The use of a sulphonated membrane as internal membrane allowed rejection of the most important electrooxidable urine interferents. The recovery assays were highly satisfactory. The wide linear response in the range 2-400 μM after 1/10 urine dilution (corresponding to 20-4000 μM) made it suitable for clinical range. High correlation with the standard spectrophotometric method was obtained (r2 = 0.98, y = 0.89x, n = 25).  相似文献   

10.
Wu B  Zhang G  Shuang S  Choi MM 《Talanta》2004,64(2):546-553
A glucose biosensor using an enzyme-immobilized eggshell membrane and oxygen electrode for glucose determination has been fabricated. Glucose oxidase was covalently immobilized on an eggshell membrane with glutaraldehyde as a cross-linking agent. The glucose biosensor was fabricated by positioning the enzyme-immobilized eggshell membrane on the surface of a dissolved oxygen sensor. The detection scheme was based on the depletion of dissolved oxygen content upon exposure to glucose solution and the decrease in the oxygen level was monitored and related to the glucose concentration. The effect of glutaraldehyde concentration, pH, phosphate buffer concentration and temperature on the response of the glucose biosensor has been studied in detail. Common matrix interferents such as ethanol, d-fructose, citric acid, sodium benzoate, sucrose and l-ascorbic acid did not give significant interference. The resulting sensor exhibited a fast response (100 s), high sensitivity (8.3409 mg L−1 oxygen depletion/mmol L−1 glucose) and good storage stability (85.2% of its initial sensitivity after 4 months). The linear response is 1.0×10−5 to 1.3×10−3 mol L−1 glucose. The glucose content in real samples such as commercial glucose injection preparations and wines was determined, and the results were comparable to the values obtained from a commercial glucose assay kit based on a spectrophotometric method.  相似文献   

11.
A highly sensitive amperometric nanobiosensor has been developed by integration of glucose oxidase (GOx) with a gold nanowires array (AuNWA) by cross-linking with a mixture of glutaraldehyde (GLA) and bovine serum albumin (BSA). An initial investigation of the morphology of the synthesized AuNWA by field emission scanning electron microscopy (FESEM) and field emission transmission electron microscopy (FETEM) revealed that the nanowires array was highly ordered with rough surface, and the electrochemical features of the AuNWA with/without modification were also investigated. The integrated AuNWA–BSA–GLA–GOx nanobiosensor with Nafion membrane gave a very high sensitivity of 298.2 μA cm−2 mM−1 for amperometric detection of glucose, while also achieving a low detection limit of 0.1 μM, and a wide linear range of 5–6000 μM. Furthermore, the nanobiosensor exhibited excellent anti-interference ability towards uric acid (UA) and ascorbic acid (AA) with the aid of Nafion membrane, and the results obtained for the analysis of human blood serum indicated that the device is capable of glucose detection in real samples.  相似文献   

12.
A new amperometric biosensor based on urate oxidase-peroxidase coupled enzyme system for the specific and selective determination of uric acid in urine was developed. Commercially available urate oxidase and peroxidase were immobilized with gelatin by using glutaraldehyde and fixed on a pretreated teflon membrane. The method is based on generation of H2O2 from urine uric acid by urate oxidase and its consuming by peroxidase and then measurement of the decreasing of dissolved oxygen concentration by the biosensor. The biosensor response depends linearly on uric acid concentration between 0.1 and 0.5 μM. In the optimization studies of the biosensor, phosphate buffer (pH 7.5; 50 mM) and 35 °C were obtained as the optimum working conditions. In addition, the most suitable enzyme activities were found as 64.9×10−3 U cm−2 for urate oxidase and 512.7 U cm−2 for peroxidase. And also some characteristic studies of the biosensor such as reproducibility, substrate specificity and storage stability were carried out.  相似文献   

13.
A.K. Upadhyay 《Talanta》2009,79(1):38-9495
A novel amperometric biosensor for the analytical determination of hydrogen peroxide was developed. The fabrication of the biosensor was based on the coimmobilization of horseradish peroxidase (HRP), methylene green (MG) and multiwalled carbon nanotubes within ormosils; 3-aminopropyltrimethoxysilane (APTMOS), 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane (ETMOS) and phenyltrimethoxysilane (PHTMOS). APTMOS determined the hydrophilicity/hydrophobicity of the ormosils and PHTMOS and ETMOS increased the physical and mechanical strength of the ormosil matrix. The ormosil modified electrodes were characterized with SEM, UV-vis spectroscopy and electrochemical methods. Cyclic voltammetry and amperometric measurements demonstrated the MG coimmobilized with HRP in this way, displayed good stability and could efficiently shuttle electrons between immobilized enzyme and electrode, and MWCNTs facilitated the electrocatalytic reduction of H2O2 at reduced over potential. The Micheaelis constant of the immobilized HRP was 1.8 mM, indicating a high affinity of the HRP to H2O2 without loss of enzymatic activity in ormosil matrix. The prepared biosensor had a fast response of H2O2, less than 10 s, and excellent linear range of concentration from 5 × 10−7 to 2 × 10−5 M with the detection limit of 0.5 μM (S/N = 3) under the optimum conditions. At the same time, the influence of solution pH, effect of enzyme amount, steady-state applied potential and temperature on the biosensor were investigated. The enzyme electrode retained about 90% of its initial activity after 30 days of storage in a dry state at 4 °C. The preparation of the developed biosensor was convenient and showed high sensitivity with good stability.  相似文献   

14.
Li YS  Gao XF 《Analytica chimica acta》2007,588(1):140-146
A novel method for the determination of ethanol in tequila based on the immobilized enzyme fluorescence capillary analysis (IE-EFCA) has been proposed. Alcohol dehydrogenase (ADH) was immobilized in inner surface of a capillary and an immobilized enzyme capillary bioreactor (IE-ECBR) was formed. After nicotinamide adenine dinucleotide (NAD+) as an oxidizer is mixed with alcohol sample solution, it was sucked into the IE-ECBR. The fluorescence intensity of the mixed solution in the IE-ECBR was detected at λex = 350 nm and λem = 459 nm. The experimental conditions are as follows: The reaction time is 20 min; temperature is 40 °C; the concentrations of phosphate buffer solution (pH 7.5) and NAD+ are 0.1 mol L−1 and 5 mmol L−1, respectively; immobilization concentration of ADH is 10 U L−1. The determination range of ethanol is 2.0-15.0 g L−1 (F = 10.44C + 6.6002, r > 0.9958); its detection limit is 1.11 g L−1; and relative standard deviation is 1.9%. IE-EFCA method is applicable for the determination of the samples containing alcohol in medicine, industry and environment.  相似文献   

15.
A hollow fiber renewal liquid membrane (HFRLM) extraction method to determine cadmium (II) in water samples using Flame Atomic Absorption Spectrometry (FAAS) was developed. Ammonium O,O-diethyl dithiophosphate (DDTP) was used to complex cadmium (II) in an acid medium to obtain a neutral hydrophobic complex (ML2). The organic solvent introduced to the sample extracts this complex from the aqueous solution and carries it over the poly(dimethylsiloxane) (PDMS) membrane, that had their walls previously filled with the same organic solvent. The organic solvent is solubilized inside the PDMS membrane, leading to a homogeneous phase. The complex strips the lumen of the membrane where, at higher pH, the complex Cd-DDTP is broken down and cadmium (II) is released into the stripping phase. EDTA was used to complex the cadmium (II), helping to trap the analyte in the stripping phase. A multivariate procedure was used to optimize the studied variables. The optimized variables were: sample (donor phase) pH 3.25, DDTP concentration 0.05% (m/v), stripping (acceptor phase) pH 8.75, EDTA concentration 1.5 × 10−2 mol L−1, extraction temperature 40 °C, extraction time 40 min, a solvent mixture N-butyl acetate and hexane (60/40%, v/v) with a volume of 100 μL, and addition of ammonium sulfate to saturate the sample. The sample volume used was 20 mL and the stripping volume was 165 μL. The analyte enrichment factor was 120, limit of detection (LOD) 1.3 μg L−1, relative standard deviation (RSD) 5.5% and the working linear range 2-30 μg L−1.  相似文献   

16.
The hydrogen peroxide-oxidation of o-phenylenediamine (OPD) catalyzed by horseradish peroxidase (HRP) at 37 °C in 50 mM phosphate buffer (pH 7.0) was studied by calorimetry. The apparent molar reaction enthalpy with respect to OPD and hydrogen peroxide were −447 ± 8 kJ mol−1 and −298 ± 9 kJ mol−1, respectively. Oxidation of OPD by H2O2 catalyzed by HRP (1.25 nM) at pH 7.0 and 37 °C follows a ping-pong mechanism. The maximum rate Vmax (0.91 ± 0.05 μM s−1), Michaelis constant for OPD Km,S (51 ± 3 μM), Michaelis constant for hydrogen peroxide Km,H2O2 (136 ± 8 μM), the catalytic constant kcat (364 ± 18 s−1) and the second-order rate constants k+1 = (2.7 ± 0.3) × 106 M−1 s−1 and k+5 = (7.1 ± 0.8) × 106 M−1 s−1 were obtained by the initial rate method.  相似文献   

17.
Zong S  Cao Y  Zhou Y  Ju H 《Analytica chimica acta》2007,582(2):361-366
A novel method for the immobilization of hemoglobin (Hb) and preparation of reagentless biosensor was proposed using a biocompatible non-toxic zirconia enhanced grafted collagen tri-helix scaffold. The formed membrane was characterized with UV-vis and FT-IR spectroscopy, scanning electron microscope and electrochemical methods. The Hb immobilized in the matrix showed excellent direct electrochemistry with an electron transfer rate constant of 6.46 s−1 and electrocatalytic activity to the reduction of hydrogen peroxide. The apparent Michaelis-Menten constant for H2O2 was 0.026 mM, showing good affinity. Based on the direct electrochemistry, a new biosensor for H2O2 ranging from 0.8 to 132 μM was constructed. Owing to the porous structure and high enzyme loading of the matrix the biosensor exhibited low limit of detection of 0.12 μM at 3σ, fast response less than 5 s and high sensitivity of 45.6 mA M−1 cm−2. The biosensor exhibited acceptable stability and reproducibility. ZrO2-grafted collagen provided a good matrix for protein immobilization and biosensing preparation. This method was useful for monitoring H2O2 in practical samples with the satisfactory results.  相似文献   

18.
A novel tyrosinase biosensor based on hydroxyapatite nanoparticles (nano-HA)-chitosan nanocomposite has been developed for the detection of phenolic compounds. The uniform and size controlled nano-HA was synthesized by hydrothermal method, and its morphological characterization was examined by transmission electron microscope (TEM). Tyrosinase was then immobilized on a nano-HA-chitosan nanocomposite-modified gold electrode. Electrochemical impedance spectroscopy and cyclic voltammetry were used to characterize the sensing film. The prepared biosensor was applied to determine phenolic compounds by monitoring the reduction signal of the biocatalytically produced quinone species at −0.2 V (vs. saturated calomel electrode). The effects of the pH, temperature and applied potential on the biosensor performance were investigated, and experimental conditions were optimized. The biosensor exhibited a linear response to catechol over a wide concentration range from 10 nM to 7 μM, with a high sensitivity of 2.11 × 103 μA mM−1 cm−2, and a limit of detection down to 5 nM (based on S/N = 3). The apparent Michaelis-Menten constants of the enzyme electrode were estimated to be 3.16, 1.31 and 3.52 μM for catechol, phenol and m-cresol, respectively. Moreover, the stability and reproducibility of this biosensor were evaluated with satisfactory results.  相似文献   

19.
A new reversed-phase high performance liquid chromatography with resonance Rayleigh scattering detection (HPLC-RRS) was developed for simultaneous separation and determination of four tetracycline antibiotics (TCs). A good chromatographic separation among the compounds was achieved using a Synergi Fusion-RP column (150 mm × 4.6 mm; 4 μm) and a mobile phase consisting of methanol-acetonitrile-oxalic acid (5 mM) at the flow rate of 0.8 mL min−1. Column temperature was 30 °C. The RRS signal was detected at λex = λem = 370 nm. The recoveries of sample added standard ranged from 95.3% to 103.5%, and the relative standard deviation was below 2.79%. A detection limit of 2.12-5.12 μg mL−1 was reached and a linear range was found between peak height and concentration in the range of 10.36-518.0 μg mL−1 for oxytetracycline (OTC), 12.11-605.5 μg mL−1 for tetracycline (TC), 11.79-589.5 μg mL−1 for chlortetracycline (CTC) and 10.32-516.0 μg mL−1 for doxycycline (DC). The linear regression coefficients were all above 0.999. The method has been applied successfully to the determination of OTC, TC, CTC, DC in pharmaceutical formulations and in honey. The method was simple, rapid and showed a better linear relation and high repeatability.  相似文献   

20.
Ahmad Umar  M.M. Rahman  Y.-B. Hahn 《Talanta》2009,78(1):284-1855
This paper reports the fabrication of highly-sensitive cholesterol biosensor based on cholesterol oxidase (ChOx) immobilization on well-crystallized flower-shaped ZnO structures composed of perfectly hexagonal-shaped ZnO nanorods grown by low-temperature simple solution process. The fabricated cholesterol biosensors reported a very high and reproducible sensitivity of 61.7 μA μM−1 cm−2 with a response time less than 5 s and detection limit (based on S/N ratio) of 0.012 μM. The biosensor exhibited a linear dynamic range from 1.0-15.0 μM and correlation coefficient of R = 0.9979. A lower value of apparent Michaelis-Menten constant (Kmapp), of 2.57 mM, exhibited a high affinity between the cholesterol and ChOx immobilized on flower-shaped ZnO structures. Moreover, the effect of pH on ChOx activity on the ZnO modified electrode has also been studied in the range of 5.0-9.0 which exhibited a best enzymatic activity at the pH range of 6.8-7.6. To the best of our knowledge, this is the first report in which such a very high-sensitivity and low detection limit has been achieved for the cholesterol biosensor by using ZnO nanostructures modified electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号