首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
In this study, nonaqueous capillary electrophoresis (NACE) was used to separate three open-cage fullerenes. Trifluoroacetic acid (TFA) was used as the nonaqueous background electrolyte to change the analytes’ mobilities. The selectivity and separation efficiency were critically affected by the nature of the buffer system, the choice of organic solvent, and the concentrations of TFA and sodium acetate (NaOAc) in the background electrolyte. The optimized separation occurred using 200 mM TFA/20 mM NaOAc in MeOH/acetonitrile (10:90, v/v), providing highly efficient baseline separation of the open-cage fullerenes within 5 min. The migration time repeatability for the three analytes was less than 1% (relative standard deviation). Thus, NACE is a rapid, useful alternative to high-performance liquid chromatography for the separation of open-cage fullerenes.  相似文献   

2.
In nonaqueous capillary electrophoresis (NACE), an organic solvent is used in place of an aqueous medium as the background solution to improve the solubility and selectivity for hydrophobic analytes. In this study, we employed NACE with UV detection for the analysis of eight calix[4]arenes. We examined the influence of several parameters—the buffer composition, the nonaqueous solvent‘s composition and proportion, and the concentration of the electrolyte of the nonaqueous buffer—on the efficiency of the electrophoretic separation. The separation was achieved through the analyte's different effective mobility via different degrees of deprotonation on the phenolic OH groups of the calix[4]arene. This deprotonation can further affect the analyte's ability to form a complex with the metal ion. The optimized background electrolyte (BGE), comprising a mixture of N‐methylformamide/acetonitrile (30:70, v/v) and 100 mM AcOH/20 mM NH4OAc, provided rapid (<11 min) separation of the calix[4]arenes with good resolution. The relative standard deviations of the migration times for the eight analytes were all less than 1%. Within the calibration concentration range, the coefficients of determination (R2) were all greater than 0.9914. Thus, the present study demonstrated NACE can provide adequate separation for the analysis of calix[4]arenes.  相似文献   

3.
The viability of nonaqueous capillary electrophoresis (NACE) was investigated for determination of gleevec and its main metabolite in human urine using a fused-silica capillary. Baseline separation of the studied solutes was obtained using a nonaqueous solution composed of 12 mM ammonium acetate and 87.6 mM acetic acid in methanol-acetonitrile (ACN) (80:20, v:v) providing analysis time shorter than 3 min. Different aspects including stability of the solutions, linearity, accuracy and precision were studied in order to validate the method in the urine matrix. Detection limits of 24 microg L(-1) for gleevec and its metabolite were obtained. A robustness test of the method was carried out using the Plackett-Burman fractional factorial model with a matrix of 15 experiments. The developed method is simple, rapid and sensitive and has been used to determine gleveec and its metabolite at clinically relevant levels in human urine. Before NACE determination, a solid-phase extraction (SPE) procedure with a C18 cartridge was necessary. Real determination of these analytes in two patient urines were done.  相似文献   

4.
Li Y  Qi S  Chen X  Hu Z 《Talanta》2005,65(1):15-20
A nonaqueous capillary electrophoresis (NACE) method with direct on-column UV detection has been developed for the separation of the pharmaceutically important anthraquinones from the total grass of Xanthophytum attopvensis pierre extract. The separation of three main anthraquinones (1-hydroxy-2-methoxy-3-hydroxymethyl-9, 10-anthraquinone-1-O-β-d-glucoside (1), rubiadin- 1-methylether (2) and 1-methoxy-2-formyl-3-hydroxy-9, 10-anthraquinone (3)) was optimized with respect to concentration of sodium cholate (SC) and acetic acid, addition of acetonitrile (ACN), and applied voltage. Baseline separation was obtained for the three analytes within 5 min using a running buffer containing 50 mM sodium cholate (SC), 1.0% acetic acid and 40% ACN in methanol. The method of NACE for the separation and determination of bioactive ingredient in traditional Chinese medicines was discussed.  相似文献   

5.
Diao P  Yuan H  Huo F  Chen L  Xiao D  Paau MC  Choi MM 《Talanta》2011,85(3):1279-1284
A simple and sensitive method has been developed for simultaneous analysis of three catecholamines: dopamine (DA), epinephrine (EP) and norepinephrine (NE) in urine by capillary electrophoresis (CE) coupled with in-column fiber-optic light-emitting diode-induced fluorescence detection (ICFO-LED-IFD). Fluorescein isothiocyanate was used as the fluorescence tagged reagent for derivatization of DA, EP and NE. The CE conditions for separation of these catecholamines were systematically investigated. It was found that catecholamines could be more effectively separated by adding β-cyclodextin (β-CD) and acetonitrile (ACN) to a background electrolyte (BGE) of sodium borate. The migration times are 10.61, 10.83 and 11.14 min for DA, EP and NE, respectively and the catecholamines are completely separated within 11.5 min under the optimal condition of a BGE containing 10% v/v ACN, 20 mM β-CD and 20 mM sodium borate (pH 9.5), and an applied voltage of 13 kV. The relative standard deviations of migration time and peak area for these catecholamines are less than 0.16 and 2.0%, respectively. The limit of quantifications (LOQs) for DA, EP and NE are 3.5, 1.0 and 3.1 nM whereas the limit of detections (LODs) for DA, EP and NE are 1.0, 0.3 and 0.9 nM, respectively. Our proposed CE method provides low LOQ and LOD values. This CE-ICFO-LED-IFD methodology has been successfully applied to analyze catecholamines in human urine samples with good accuracy and satisfactory recovery.  相似文献   

6.
A simple method for the separation and characterization of a group of nine basic compounds, comprising seven tricyclic antidepressant and two bronchodilator drugs, by nonaqueous capillary electrophoresis (NACE) employing ultraviolet and mass spectrometry detection is described. After optimization of the electrophoresis separation conditions, including the compositions of the electrolyte and the organic solvent, a reliable separation of all nine basic analytes was achieved in 80 mM ammonium formate dissolved in a methanol-acetonitrite (80:20 v/v) mixture, having an apparent pH of 8.7. The volatile nonaqueous electrolyte system used with a normal electroosmotic flow polarity also provided an optimal separation condition for the characterization of the analytes by mass spectrometry. When results were compared with reversed-phase gradient and isocratic high-performance liquid chromatography (HPLC) methods, the NACE method provided greater efficiency, achieving baseline resolution for all nine basic compounds in less than 30 min. The NACE method is suitable for use as a routine procedure for the rapid separation and characterization of basic compounds and is a viable alternative to HPLC for the separation of a wide range of pharmaceutical drugs.  相似文献   

7.
Nonaqueous background electrolytes broaden the application of capillary electrophoresis displaying altered separation selectivity and interactions between analytes and buffer additives compared to aqueous background electrolytes. In addition, nonaqueous capillary electrophoresis (NACE) appears to be ideally suited for online coupling with mass spectrometry due to the high volatility and low surface tension of many organic solvents. Despite these advantages and an increasing use of nonaqueous background electrolytes in CE, coupling of NACE to mass spectrometry has not yet been applied very often to date. The present review summarizes the applications of online NACE-MS with regard to the analysis of drugs, stereoisomers, peptides, alkaloids, polymers and others. A brief discussion of solvent effects in NACE and pH of nonaqueous background electrolyte systems is also presented.  相似文献   

8.
Flores JR  Nevado JJ  Salcedo AM  Díaz MP 《Talanta》2005,65(1):155-162
The viability of nonaqueous capillary electrophoresis (NACE) was investigated for the simultaneous determination of tamoxifen, imipramine and their main metabolites (4-hydroxytamoxifen and desipramine, respectively). Baseline separation of the studied solutes was obtained on a 57 cm × 75 μm capillary using a nonaqueous solution composed of 17 mM ammonium acetate and 1.25% acetic acid in 80:20 (v:v) methanol-acetonitrile, temperature and voltage 22 °C and 15 kV, respectively, and hydrodynamic injection. Paroxetine was used as internal standard. Different aspects including linearity, accuracy, ruggedness and precision was studied. Detection limits between 9.0 and 15.0 μg L−1 were obtained for all the studied compounds. The developed method is simple, rapid and sensitive and has been used to determine tamoxifen, imipramine and their metabolites at clinically relevant levels in human urine. Before NACE determination, a solid phase extraction (SPE) procedure with a C18 cartridge was necessary. Real determination of these analytes in three females urines were done.  相似文献   

9.
Aqueous and nonaqueous capillary electrophoresis (NACE) were investigated for separation of venlafaxine, a new second-generation antidepressant, and its three phase I metabolites. Working at basic pH, around the venlafaxine pKa value, was effective in resolving the investigated drugs, but created considerable peak tailing. To overcome electrostatic interactions between analytes and silanol groups, investigations were also carried out at acidic pH. However, despite the addition of up to 50% v/v of organic solvents (e.g., methanol or acetonitrile), complete separation of the studied compounds was not possible. NACE was found to be an appropriate alternative to resolve venlafaxine and its metabolites simultaneously. Using a conventional capillary (fused-silica, 64.5 cm length, 50 microm inner diameter), and a methanol-acetonitrile mixture (20/80 v/v) containing 25 mM ammonium formate and 1 M formic acid, complete resolution of these closely related compounds was performed in less than 3.5 min. Selectivity, efficiency and separation time were greatly affected by the organic solvent composition. As the electric current generated in nonaqueous medium was very low, the electric field was further increased by reducing the capillary length. This allowed a baseline resolution of venlafaxine and its three metabolities in 0.7 min. Selectivity was compared in aqueous and nonaqueous media in relation to the acid-base properties of the analytes as well as to the solvation degree. Finally, the method successfully coupled on-line to mass spectrometry with electrospray ionization interface allowed significant sensitivity enhancement.  相似文献   

10.
A chiral selector, di-n-amyl L-tartrate-boric acid complex, was in situ synthesized by the reaction of di-n-amyl L-tartrate with boric acid in a nonaqueous background electrolyte (BGE) using methanol as the medium. And a new method of chiral nonaqueous capillary electrophoresis (NACE) was developed with the complex as the chiral selector. It has been demonstrated that the chiral selector is suitable for the enantioseparation of some β-blockers and β-agonists in NACE. Some chiral analytes that could not be resolved in aqueous microemulsion electrokinetic chromatography (MEEKC) with the same chiral selector obtained baseline resolutions in the NACE system. The enantioseparation mechanism was considered to be ion-pair principle and the nonaqueous system was more favorable for the ion-pair formation which is quite useful for the chiral recognition. The addition of a proper concentration of triethylamine into the BGE to control the apparent pH (pH*) enhanced the enantiomeric discrimination. In order to achieve a good enantioseparation, the effects of di-n-amyl L-tartrate and boric acid concentration, triethylamine concentration, applied voltage, as well as capillary length were investigated. Under the optimum conditions, all of the tested chiral analytes including six β-blockers and five β-agonists were baseline resolved.  相似文献   

11.
Zhu HD  Lü WJ  Li HH  Ma YH  Hu SQ  Chen HL  Chen XG 《Journal of chromatography. A》2011,1218(34):5867-5871
This paper for the first time describes the development of micelle to solvent stacking (MSS) to nonaqueous capillary electrophoresis (NACE). In this proposed MSS-NACE, sodium dodecyl sulfate (SDS) micelles transport, release, and focus analytes from the sample solution to the running buffer using methanol as their solvent. After the focusing step, the focused analytes were separated via NACE. The focusing mechanism and influencing factors were discussed using berberine (BBR) and jatrorrhizine (JTZ) as model compounds. And the optimum condition was obtained as following: 50 mM ammonium acetate, 6% (v/v) acetic acid and 10 mM SDS in redistilled water as sample matrix, 50 mM ammonium acetate and 6% (v/v) acetic acid in pure methanol as the running buffer, -20 kV focusing voltage with 30 min focusing time. Under these conditions, this method afforded limits of detection (S/N=3) of 0.002 μg/mL and 0.003 μg/mL for BBR and JTZ, respectively. In contrast to conventional NACE, the concentration sensitivity was improved 128-153-fold.  相似文献   

12.
The present study reports the investigation of capillary electrophoresis (CE) for the separation of the photosynthetic pigments (chlorophyll derivatives as well as carotenoids) together. Various CE methods, such as micellar electrokinetic chromatography, capillary electrokinetic chromatography, and nonaqueous capillary electrophoresis (NACE) are tested, with coated and uncoated capillary columns to evaluate optimal separation conditions using diode array detection. The effect of different type and composition of organic solvents and surfactants on the separation is discussed. Detection limits are found in the range of 1.14-2.45 ppm. According to the system suitability results, the most effective separation is observed using NACE with Aliquat 336 as cationic surfactant in coated capillary and mixture of MeOH-ACN-THF (5:4:1, v/v/v) as solvent. Quantitative evolution is investigated, and recovery percentage values are found to be 96.7-102%.  相似文献   

13.
In the present study, field amplified sample stacking (FASS) techniques in the nonaqueous capillary electrophoresis method (NACE) were introduced for the on-line concentration of the acrylamide to improve acrylamide detection at 210 nm by diode-array detection. Acetonitrile (ACN) as a nonaqueous solvent permits acrylamide to be protonated through the change of its acid-base chemistry, allowing capillary electrophoretic separation of this compound. Choosing 30 mmol L(-1) HClO(4), 20 mmol L(-1) NaClO(4), 218 mmol L(-1) CH(3)COOH in ACN as the separation electrolyte and employing sample stacking methods, the LOD value of acrylamide was decreased to 2.6 ng mL(-1) with electrokinetic injection and 4.4 ng mL(-1) with hydrodynamic injection. Optimized stacking conditions were applied to the determination of acrylamide in several foodstuffs. The method is simple, rapid, inexpensive, and widely applicable for the determination of acrylamide in food samples.  相似文献   

14.
A capillary electrophoretic (CE) method was developed for the separation of diastereoisomers of a new human immunodeficiency virus (HIV) protease inhibitor TMC114. In total 16 isomers of this drug have been synthesized (eight pairs of enantiomers). We succeeded in the separation of the eight diastereoisomers, but no enantiomers could be separated. Because of the high similarity and water-insolubility of these isomers, the separation is a real challenge. Different CE modes were tried out: capillary zone electrophoresis (CZE), nonaqueous capillary electrophoresis (NACE), micellar electrokinetic capillary chromatography (MEKC), and microemulsion electrokinetic capillary chromatography (MEEKC). Only MEEKC offered resolution of these compounds.  相似文献   

15.
A rapid and simple method was demonstrated for the analysis of atropine, anisodamine, and scopolamine by nonaqueous capillary electrophoresis (NACE) coupled with electrochemiluminescence (ECL) and electrochemistry (EC) dual detection. The mixture of acetonitrile (ACN) and 2-propanol containing 1 M acetic acid (HAc), 20 mM sodium acetate (NaAc), and 2.5 mM tetrabutylammonium perchlorate (TBAP) was used as the electrophoretic buffer. Although a short capillary of 18 cm was used, the decoupler was not needed and the separation efficiency was good. The linear ranges of atropine, anisodamine, and scopolamine were 0.5–50, 5–2000, and 50–2000 μM, respectively. For six replicate measurements of 100 μM scopolamine, 15 μM atropine, and 200 μM anisodamine, the RSDs of ECL intensity, EC current, and migration time were less than 3.6%, 4.5%, and 0.3%, respectively. In addition, because the organic buffer was used, the working electrode (Pt) was not easily fouled and did not need reactivation. The method was also applied for the determination of these three alkaloids in Flos daturae extract.  相似文献   

16.
Efficiency studies in nonaqueous capillary electrophoresis   总被引:2,自引:0,他引:2  
Nonaqueous capillary electrophoresis (NACE) is a relatively new area with several advantages that include enhanced efficiency and improved detection sensitivity. The goal of this study was to investigate the influence of NACE compared to aqueous CE on the separation efficiency of oligosaccharides. The applied voltage and buffer concentration were optimized for the aqueous and nonaqueous buffer media to minimize the band broadening effects of Joule heating and electrophoretic dispersion. At the optimized conditions a 1.5-fold enhancement in efficiency was obtained with the nonaqueous buffer medium.  相似文献   

17.
The migration behaviour of isoquinoline, quinoline, and methyl derivatives of quinoline in different capillary electrophoretic modes has been systematically investigated. Optimised separation conditions were established by varying the key parameters (solvent, pH, temperature, surfactant concentration, core phase) for aqueous and non‐aqueous capillary zone electrophoresis (NACE), micellar electrokinetic chromatography (MEKC) with anionic or non‐ionic micelles (SDS, Brij 35), and microemulsion electrokinetic chromatography (MEEKC) with charged or uncharged microemulsion droplets. A separation of all quinolines could be achieved by MEEKC with charged droplets, by MEKC or by formamide‐based NACE. Comparing the separations with respect to separation selectivity, substantial changes in migration order could be observed between the different techniques. Regarding separation efficiency, the number of theoretical plates and limits of detection (LOD) have been compared. The best LODs were achieved using SDS as surfactant in MEKC, followed by MEEKC.  相似文献   

18.
A selective and sensitive method was developed for separation and simultaneous determination of catecholamines and amino acids by MEKC with LIF. Interestingly enough, such work has been firstly performed on catecholamines derivatized with 4-chloro-7-nitro-2,1,3-benzoxadiazole and the detailed derivatization mechanism was discussed. After derivatization at 60 degrees C for 20 min, NBD-labeled catecholamines and amino acids were separated in a buffer system containing 10 mM sodium tetraborate-Na2HPO4, 20 mM SDS, and 10% v/v ACN at pH 9.75. SDS micelles were employed to improve the fluorescence intensity of catecholamine derivatives efficiently. Under optimum conditions, two catecholamines and 11 amino acids were separated in a short 13 min analysis time and the RSDs for migration time and peak area were less than 0.60 and 6.50%, respectively. The method was successfully applied for the quantification of catecholamines and amino acids in Portulaca oleracea L., human urine sample, and mixed injection sample.  相似文献   

19.
非水溶液毛细管电泳手性分离   总被引:3,自引:0,他引:3  
对非水溶液毛细管电泳中手性分离的研究现状和发展趋势进行了简要的评述。主要是以手性分离中所用的手性试剂为线索,对它们在非水溶液中的应用情况及其对分离度、柱效和分离选择性的影响进行综述并与水溶液中的情况作了比较。对于在水溶液中已经得到应用而在非水溶液中未被使用的部分试剂也进行了简要地解释。  相似文献   

20.
Liu Q  Liu Y  Guo M  Luo X  Yao S 《Talanta》2006,70(1):202-207
Laser-induced fluorescence (LIF) is a highly sensitive detection method for capillary electrophoresis (CE). However, it usually requires analyte to be derivatized, unless the wavelength of native fluorescence of analyte matches the laser's. That limits its application in drug analysis. In this work, we introduced a rapid, simple and sensitive method of nonaqueous capillary electrophoresis with laser-induced native fluorescence (NACE-LIF) detection for the analysis of chelerythrine and sanguinarine for the first time. As these two alkaloids have some native fluorescence, they were directly detected using a commercially available Ar+ laser without troublesome fluorescent derivatization. The fluorescence was enhanced by nonaqueous media. Compared with previously reported UV detection method, lower limit of detection (LOD) is achieved thanks to the high sensitivity of LIF detection (2.0 ng/mL for chelerythrine and 6.3 ng/mL for sanguinarine). Moreover, with NACE, the baseline separation of these alkaloids is finished within 3.5 min. This method is successfully applied to determine the contents of chelerythrine and sanguinarine in Macleaya cordata (Willd.) R. Br. and Chelidonium majus L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号