首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
A novel microextraction technique, air-assisted liquid–liquid microextraction (AALLME), which is a new version of dispersive liquid–liquid microextraction (DLLME) method has been developed for extraction and preconcentration of phthalate esters, dimethyl phthalate (DMP), diethyl phthalate (DEP), di-iso-butyl phthalate (DIBP), di-n-butyl phthalate (DNBP), and di-2-ethylhexyl phthalate (DEHP), from aqueous samples prior to gas chromatography–flame ionization detection (GC–FID) analysis. In this method, much less volume of an organic solvent is used as extraction solvent in the absence of a disperser solvent. Fine organic droplets were formed by sucking and injecting of the mixture of aqueous sample solution and extraction solvent with a syringe for several times in a conical test tube. After extraction, phase separation was performed by centrifugation and the enriched analytes in the sedimented phase were determined by GC–FID. Under the optimum extraction conditions, the method showed low limits of detection and quantification between 0.12–1.15 and 0.85–4 ng mL−1, respectively. Enrichment factors (EFs) and extraction recoveries (ERs) were in the ranges of 889–1022 and 89–102%, respectively. The relative standard deviations (RSDs) for the extraction of 100 ng mL−1 and 500 ng mL−1 of each phthalate ester were less than 4% for intra-day (n = 6) and inter-days (n = 4) precision. Finally some aqueous samples were successfully analyzed using the proposed method and three analytes, DIBP, DNBP and DEHP, were determined in them at ng mL−1 level.  相似文献   

2.
A rapid and sensitive method for the determination of carbendazim (methyl benzimidazole-2-ylcarbamate, MBC) and thiabendazole (TBZ) in water and soil samples was developed by using dispersive liquid-liquid microextraction (DLLME) coupled with high performance liquid chromatography with fluorescence detection. The water samples were directly used for the DLLME extraction. For soil samples, the target analytes were first extracted by 0.1 mol L−1 HCl. Then, the pH of the extract was adjusted to 7.0 with 2 mol L−1 NaOH before the DLLME extraction. In the DLLME extraction method, chloroform (CHCl3) was used as extraction solvent and tetrahydrofuran (THF) as dispersive solvent. Under the optimum conditions, the enrichment factors for MBC and TBZ were ranged between 149 and 210, and the extraction recoveries were between 50.8 and 70.9%, respectively. The linearity of the method was obtained in the range of 5-800 ng mL−1 for water sample analysis, and 10-1000 ng g−1 for soil samples, respectively. The correlation coefficients (r) ranged from 0.9987 to 0.9997. The limits of detection were 0.5-1.0 ng mL−1 for water samples, and 1.0-1.6 ng g−1 for soil samples. The relative standard deviations (RSDs) varied from 3.5 to 6.8% (n = 5). The recoveries of the method for MBC and TBZ from water samples at spiking levels of 5 and 20 ng mL−1 were 84.0-94.0% and 86.0-92.5%, respectively. The recoveries for soil samples at spiking levels of 10 and 100 ng g−1 varied between 82.0 and 93.4%.  相似文献   

3.
In the present study, a rapid, highly efficient and environmentally friendly sample preparation method named ionic liquid-based ultrasound-assisted dispersive liquid–liquid microextraction (IL-USA-DLLME), followed by high performance liquid chromatography (HPLC) has been developed for the extraction and preconcentration of four benzophenone-type ultraviolet (UV) filters (viz. benzophenone (BP), 2-hydroxy-4-methoxybenzophenone (BP-3), ethylhexyl salicylate (EHS) and homosalate (HMS)) from three different water matrices. The procedure was based on a ternary solvent system containing tiny droplets of ionic liquid (IL) in the sample solution formed by dissolving an appropriate amount of the IL extraction solvent 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([HMIM][FAP]) in a small amount of water-miscible dispersive solvent (methanol). An ultrasound-assisted process was applied to accelerate the formation of the fine cloudy solution, which markedly increased the extraction efficiency and reduced the equilibrium time. Various parameters that affected the extraction efficiency (such as type and volume of extraction and dispersive solvents, ionic strength, pH and extraction time) were evaluated. Under optimal conditions, the proposed method provided good enrichment factors in the range of 354–464, and good repeatability of the extractions (RSDs below 6.3%, n = 5). The limits of detection were in the range of 0.2–5.0 ng mL−1, depending on the analytes. The linearities were between 1 and 500 ng mL−1 for BP, 5 and 500 ng mL−1 for BP-3 and HMS and 10 and 500 ng mL−1 for EHS. Finally, the proposed method was successfully applied to the determination of UV filters in river, swimming pool and tap water samples and acceptable relative recoveries over the range of 71.0–118.0% were obtained.  相似文献   

4.
Li Y  Wei G  Hu J  Liu X  Zhao X  Wang X 《Analytica chimica acta》2008,615(1):96-103
A simple, rapid and efficient method, dispersive liquid-liquid microextraction (DLLME), has been developed for the extraction and preconcentration of polybrominated diphenyl ethers (PBDEs) in water samples. The factors influencing microextraction efficiencies, such as the kind and volume of extraction and dispersive solvent, the extraction time and the salt effect, were optimized. Under the optimum conditions (sample volume: 5 mL; extraction solvent: tetrachloroethane, 20.0 μL; dispersive solvent: acetonitrile, 1.00 mL; extraction time: below 5 s and without salt addition), the enrichment factors and extraction recoveries were high and ranged from 268 to 305 and 87.0 to 119.1%, respectively. Linearity was observed in the range 0.05-50 ng mL−1 for BDE-28 and BDE-99, and 0.1-100 ng mL−1 for BDE-47 and BDE-209, respectively. Coefficients of correlation (r2) ranged from 0.9995 to 0.9999. The repeatability study was carried out by extracting the spiked water samples at concentration levels of 50 ng mL−1 for BDE-28 and BDE-99, and 100 ng mL−1 for BDE-47 and BDE-209, respectively. The relative standard deviations (R.S.D.s) varied between 3.8 and 6.3% (n = 5). The limits of detection (LODs), based on signal-to-noise ratio (S/N) of 3, ranged from 12.4 to 55.6 pg mL−1 (the wavelength of detector at 226 nm). The relative recoveries of PBDEs from tap, lake water and landfill leachate samples at spiking levels of 5, 10 and 50 ng mL−1 were in the range of 89.7-107.6%, 114.3-119.1% and 87.0-90.9%, respectively. As a result, this method can be successfully applied for the determination of PBDEs in landfill leachate and environmental water samples.  相似文献   

5.
In this article, a new ligandless dispersive liquid-liquid microextraction method has been developed for preconcentration of trace quantities of silver as a prior step to its determination by flame atomic absorption spectrometry. In the proposed approach, carbon tetrachloride and ethanol were used as extraction and dispersive solvents. Several factors that may be affected on the extraction process, like, extraction solvent, disperser solvent, the volume of extraction and disperser solvent, pH of the aqueous solution and extraction time were optimized. Under the optimal conditions, the calibration curve was linear in the range of 5.0 ng mL−1 to 2.0 μg mL−1 of silver with R2 = 0.9995 (n = 9) and detection limit based on three times the standard deviation of the blank (3Sb) was 1.2 ng mL−1 in original solution. The relative standard deviation for eight replicate determination of 0.5 μg mL−1 silver was ±1.5%. The high efficiency of dispersive liquid-liquid microextraction to carry out the determination of silver in complex matrices was demonstrated. The proposed method has been applied for determination of trace amount of silver in standard and water samples with satisfactory results.  相似文献   

6.
In this work, a simple, rapid and sensitive sample pretreatment technique, dispersive liquid-liquid microextraction (DLLME) coupled with high performance liquid chromatography-fluorescence detection (HPLC-FLD), has been developed to determine carbamate (carbaryl) and organophosphorus (triazophos) pesticide residues in water and fruit juice samples. Parameters, affecting the DLLME performance such as the kind and volume of extraction and dispersive solvents, extraction time and salt concentration, were studied and optimized. Under the optimum extraction conditions (extraction solvent: tetrachloroethane, 15.0 μL; dispersive solvent: acetonitrile, 1.0 mL; no addition of salt and extraction time below 5 s), the performance of the proposed method was evaluated. The enrichment factors for the carbaryl and triazophos were 87.3 and 275.6, respectively. The linearity was obtained in the concentration range of 0.1-1000 ng mL−1 with correlation coefficients from 0.9991 to 0.9999. The limits of detection (LODs), based on signal-to-noise ratio (S/N) of 3, ranged from 12.3 to 16.0 pg mL−1. The relative standard deviations (RSDs, for 10 ng mL−1 of carbaryl and 20 ng mL−1 of triazophos) varied from 1.38% to 2.74% (n = 6). The environmental water (at the fortified level of 1.0 ng mL−1) and fruit juice samples (at the fortified level of 1.0 and 5.0 ng mL−1) were successfully analyzed by the proposed method, and the relative recoveries of them were in the range of 80.4-114.2%, 89.8-117.9% and 86.3-105.3%, respectively.  相似文献   

7.
A novel ultrasound-assisted surfactant-enhanced emulsification microextraction (UASEME) coupled with high performance liquid chromatography-diode array detection has been developed for the extraction and determination of six carbamate pesticides (metolcarb, carbofuran, carbaryl, pirimicarb, isoprocarb and diethofencarb) in water samples. In the UASEME technique, Tween 20 was used as emulsifier, and chlorobenzene and chloroform were used as dual extraction solvent without using any organic dispersive solvent that is normally required in the previously described common dispersive liquid–liquid microextraction method. Parameters that affect the extraction efficiency, such as the kind and volume of the extraction solvent, the type and concentration of the surfactant, ultrasound emulsification time and salt addition, were investigated and optimized for the method. Under the optimum conditions, the enrichment factors were in the range between 170 and 246. The limits of detection of the method were 0.1–0.3 ng mL−1 and the limits of quantification were between 0.3 and 0.9 ng mL−1, depending on the compounds. The linearity of the method was obtained in the range of 0.3–200 ng mL−1 for metolcarb, carbaryl, pirimicarb, and diethofencarb, 0.6–200 ng mL−1 for carbofuran, and 0.9–200 ng mL−1 for isoprocarb, with the correlation coefficients (r) ranging from 0.9982 to 0.9998. The relative standard deviations varied from 3.2 to 4.8% (n = 5). The recoveries of the method for the six carbamates from water samples at spiking levels of 1.0, 10.0, 50.0 and 100.0 ng mL−1 were ranged from 81.0 to 97.5%. The proposed UASEME technique has demonstrated to be simple, practical and environmentally friendly for the determination of carbamates residues in river, reservoir and well water samples.  相似文献   

8.
Dispersive liquid-liquid microextraction (DLLME) coupled with high-performance liquid chromatography-variable wavelength detector (HPLC-VWD) was developed for extraction and determination of chloramphenicol (CAP) and thiamphenicol (THA) in honey. In this extraction method, 1.0 mL of acetonitrile (as dispersive solvent) containing 30 μL 1,1,2,2-tetrachloroethane (as extraction solution) was rapidly injected by syringe into a 5.00-mL water sample containing the analytes, thereby forming a cloudy solution. After extraction, phase separation was performed by centrifugation and the enriched analytes in the sedimented phase were determined by HPLC-VWD. Some important parameters, such as the nature and volume of extraction solvent and dispersive solvent, extraction time, sample solution pH, sample volume and salt effect were investigated and optimized. Under the optimum extraction condition, the method yields a linear calibration curve in the concentration range from 3 to 2000 μg kg−1 for target analytes. The enrichment factors for CAP and THA were 68.2 and 87.9, and the limits of detection (S/N = 3) were 0.6 and 0.1 μg kg−1, respectively. The relative standard deviations (RSDs) for the extraction of 10 μg kg−1 of CAP and THA were 4.3% and 6.2% (n = 6). The main advantages of DLLME-HPLC method are simplicity of operation, rapidity, low cost, high enrichment factor, high recovery, good repeatability and extraction solvent volume at microliter level. Honey samples were successfully analyzed using the proposed method.  相似文献   

9.
In the present work, a new ligandless-dispersive liquid-liquid microextraction (LL-DLLME) method has been developed for preconcentration trace amounts of copper as a prior step to its determination by flame atomic absorption spectrometry. In the proposed approach 1,2-dicholorobenzene and ethanol were used as extraction and dispersive solvents, respectively. Some factors influencing on the extraction efficiency of copper and its subsequent determination were studied and optimized, such as the extraction and dispersive solvent type and volume, pH of sample solution, extraction time and salting out effect. Under the optimal conditions, the calibration curve was linear in the range of 1.0 ng mL−1-0.6 μg mL−1 of copper with R2 = 0.9985. Detection limit was 0.5 ng mL−1 in original solution (3Sb/m) and the relative standard deviation for seven replicate determination of 0.2 μg mL−1 copper was ±1.4%. The proposed method has been applied for determination of copper in standard and water samples with satisfactory results.  相似文献   

10.
Pei Liang  Qian Li  Jing Xu  Dan Du 《Chromatographia》2008,68(5-6):393-397
A novel method, continuous-flow microextraction (CFME) combined with liquid chromatography (LC) with variable-wavelength detector (VWD), has been developed for the determination of three phthalate esters (dimethyl phthalate (DMP), diethyl phthalate (DEP), and di-n-butyl phthalate (DnBP)) in water samples. Experimental parameters including extraction solvent, solvent drop volume, flow rate of sample solution, extraction time and ionic strength, which affected the extraction efficiency, were studied and optimized. Under the optimum extraction conditions, the method yields a linear calibration curve in the concentration range of 10–10,000 ng mL?1 for target analytes. The enrichment factors of this method for DMP, DEP and DnBP reached at 27, 44 and 20, respectively, and the detection limits were 2, 1 and 5 ng mL?1, respectively. Good repeatability of extraction was obtained with relative standard deviations below 8.6%. The results demonstrated that CFME followed by LC-VWD is a simple and reliable technique for the determination of phthalate esters in water samples.  相似文献   

11.
Pei Liang  Ehong Zhao  Feng Li 《Talanta》2009,77(5):1854-1857
A new method for the determination of palladium was developed by dispersive liquid-liquid microextraction preconcentration and graphite furnace atomic absorption spectrometry detection. In the proposed approach, diethyldithiocarbamate (DDTC) was used as a chelating agent, and carbon tetrachloride and ethanol were selected as extraction and dispersive solvent. Some factors influencing the extraction efficiency of palladium and its subsequent determination, including extraction and dispersive solvent type and volume, pH of sample solution, concentration of the chelating agent and extraction time, were studied and optimized. Under the optimum conditions, the enrichment factor of this method for palladium reached at 156. The detection limit for palladium was 2.4 ng L−1 (3σ), and the relative standard deviation (R.S.D.) was 4.3% (n = 7, c = 1.0 ng mL−1). The method was successfully applied to the determination of trace amount of palladium in water samples.  相似文献   

12.
A rapid and effective preconcentration method for extraction of rhodamine 6G was developed by using a dispersive liquid-liquid microextraction (DLLME) prior to UV-vis spectrophotometry. In this extraction method, a suitable mixture of acetone (disperser solvent) and chloroform (extractant solvent) was injected rapidly into a conical test tube containing aqueous solution of rhodamine 6G. Therefore, a cloudy solution was formed. After centrifugation of the cloudy solution, sedimented phase was evaporated, reconstituted with methanol and measured by UV-vis spectrophotometry. Different operating variables such as type and volume of extractant solvent, type and volume of disperser solvent, pH of the sample solution, salt concentration and extraction time were investigated. The optimized conditions (extractant solvent: 300 μL of chloroform, disperser solvent: 3 mL of acetone, pH: 8 and without salt addition) resulted in a linear calibration graph in the range of 5-900 ng mL−1 of rhodamine 6G in initial solution with R2 = 0.9988 (n = 5). The Limits of detection and quantification were 2.39 and 7.97 ng mL−1, respectively. The relative standard deviation for 50 and 250 ng mL−1 of rhodamine 6G in water were 2.88% and 1.47% (n = 5), respectively. Finally, the DLLME method was applied for determination of rhodamine 6G in different industrial waste waters.  相似文献   

13.
The aim of the present work is combination of the advantages of magnetic solid phase extraction (MSPE) and dispersive liquid phase microextraction (DLLME) followed by filtration-based phase separation. A new pretreatment method was developed for trace determination of megestrol acetate and levonorgestrel by liquid chromatography/ultraviolet detection in biological and wastewater samples. After magnetic solid phase extraction, the eluent of MSPE was used as the disperser solvent for DLLME. Emulsion resulted from DLLME procedure was passed through the in-line filter for phase separation. Finally the retained analytes in the filter was washed with mobile phase of liquid chromatography and transferred to the column for separation. This approach offers the preconcentration factors of 3680 and 3750 for megestrol acetate and levonorgestrel, respectively. This guarantees determination of the organic compounds at trace levels. The important parameters influencing the extraction efficiency were studied and optimized. Under the optimal extraction conditions, a linear range of 0.05–50 ng mL−1 (R2 > 0.998) and limit of detection of 0.03 ng mL−1 were obtained for megestrol acetate and levonorgestrel. Under optimal conditions, the method was successfully applied for determination of target analytes in urine and wastewater samples and satisfactory results were obtained (RSDs < 6.8%).  相似文献   

14.
Orthogonal array design (OAD) was utilized for the first time to optimize the experimental conditions of ultrasound-assisted emulsification–microextraction (USAEME) for determining chlorinated phenoxyacetic acids (CPAs) in river water samples. The use of ultrasound facilitates the mass transfer of CPAs from an aqueous phase into a water-immiscible organic extraction solvent (dichloromethane, DCM) without adding dispersive solvent to form numerous microdroplets. The water-immiscible extractant was collected by centrifugation, dried under low pressure, reconstituted in methanol–water mixture (1:1), and injected into a HPLC system for the determination of CPAs. The linear range was 2–1000 ng mL−1 (2, 5, 10, 50, 200, 500 and 1000 ng mL−1) for each analyte and the relative standard deviations of CPAs among the seven different concentrations were in the range of 1.5–17.0% (n = 3). The detection limits (signal-to-noise ratio of 3) of CPAs ranged from 0.67 to 1.50 ng mL−1. The ranges of intra-day precision (n = 3) for CPAs at the levels of 5 and 200 ng mL−1 were 3.6–11.9% and 5.3–9.5%, respectively. The range of inter-day precision (n = 3) at 5 and 200 ng mL−1 were 1.4–7.7% and 8.5–12.2%, respectively. The applicability of USAEME for environmental analysis was demonstrated by determining CPAs in river water. The recoveries of CPAs from five-spiked river water samples at 10 and 200 ng mL−1 were 96.3–112.5% and 94.8–109.4%, respectively. The maximum contaminant level (MCL) of 2,4-D in drinking water and the tolerance of residues in food for p-CPA are 70 and 200 μg L−1, respectively, according to the US EPA regulations. These contaminant levels fall in the linear range investigated in this study. In addition, this USAEME method provided detection limits lower than their contaminant levels, which made USAEME an effective sample preparation method for determining organic environmental contaminants, such as CPAs, in river water samples with little consumption of organic solvent.  相似文献   

15.
The directly suspended droplet microextraction (DSDME) technique coupled with the capillary gas chromatography-flame ionization detector (GC-FID) was used to determine BTEX compounds in aqueous samples. The effective parameters such as organic solvent, extraction time, microdroplet volume, salt effect and stirring speed were optimized. The performance of the proposed technique was evaluated for the determination of BTEX compounds in natural water samples. Under the optimal conditions the enrichment factors ranged from 142.68 to 312.13, linear range; 0.01-20 μg mL−1, limits of detection; 0.8-7 ng mL−1 for most analytes. Relative standard deviations for 0.2 μg mL−1 of BTEX in water were in the range 1.81-2.47% (n = 5). The relative recoveries of BTEX from surface water at spiking level of 0.2 μg mL−1 were in the range of 89.87-98.62%.  相似文献   

16.
A simple and fast method of low-density extraction solvent-based solvent terminated dispersive liquid–liquid microextraction (ST-DLLME) was developed for the highly sensitive determination of carbamate pesticides in the water samples by gas chromatography-tandem mass spectrometry (GC-MSMS). After dispersing, the obtained emulsion cleared into two phases quickly when an aliquot of acetonitrile was introduced as a chemical demulsifier into the aqueous bulk. Therefore, the developed procedure does not need centrifugation to achieve phase separation. It was convenient for the usage of low-density extraction solvents in DLLME. Under the optimized conditions, the limits of detection for all target carbamate pesticides were in range of 0.001–0.50 ng mL−1 and the precisions were in the range of 2.3–6.8% (RSDs, 2 ng mL−1, n = 5). The proposed method has been successfully applied to the analysis of real water samples and good spiked recoveries over the range of 94.5–104% were obtained.  相似文献   

17.
A technique of ultrasound-assisted low density solvent based dispersive liquid-liquid microextraction was developed for the determination of four phthalate esters, including dimethyl phthalate(DMP), diethyl phthalate(DEP), di-n-butyl phthalate(DnBP) and di(2-ethylhexyl) phthalate(DEHP) in bottled water samples. A low density solvent, toluene, was selected as extraction solvent. In the extraction process, a mixture of 15 μL of toluene(extraction solvent) and 100 μL of methanol(disperser solvent) was rapidly injected into 1.0 mL of water samples. A cloudy solution was formed after ultrasounded for 5 min, and then centrifuged at 5000 r/min for 5 min. The enriched analytes in the floating phase were determined by means of gas chromatograph. Under the optimum conditions, the enrichment factors were found to be in a range of 29-67, and the recoveries were ranged from 81.2% to 103.9%. The limits of the detection were in a range of 3.8-5.6 μg/L. The proposed method was applied to the extraction and determination of phthalate esters in bottled water samples, and the concentrations of phthalate esters found in the water samples were below the allowable levels.  相似文献   

18.
The hollow fiber-based stirring extraction bar liquid–liquid microextraction was applied to the extraction of hormones, including 17-α-ethinylestradiol, 17-α-estradiol, estriol, 17-β-estradiol, estrone, 17-α-hydroxyprogesterone, medroxyprogesterone, progesterone and norethisterone acetate, in milk. The present method has the advantages of both hollow fiber-liquid phase microextraction and stirring bar sorptive extraction. The stirring extraction bar was used as both the stirring bar of microextraction, and extractor of the analytes, which can make extraction, clean-up and concentration be carried out in one step. When the extraction was completed, the stirring extraction bar was easy isolated from the extraction system with the magnet. Several experimental parameters, including the type of extraction solvent, the number of hollow stirring extraction bar, extraction time, stirring speed, ionic strength, and desorption conditions were investigated and optimized. The analytes in the extract were derived and determined by gas chromatography mass spectrometry. Under optimal experimental conditions, good linearity was observed in the range of 0.20–20.00 ng mL−1. The limits of detection and quantification were in the range of 0.02–0.06 ng mL−1 and 0.07–0.19 ng mL−1, respectively. The present method was applied to the analysis of milk samples, and the recoveries of analytes were in the range of 93.6–104.6% with the relative standard deviations ranging from 1.6% to 6.2% (n = 5). The results showed that the present method was a rapid and feasible method for the determination of hormones in milk samples.  相似文献   

19.
Ultrasound-assisted dispersive liquid–liquid microextraction coupled with high-performance liquid chromatography-fluorescence detection was used for the extraction and determination of three biogenic amines including octopamine, tyramine and phenethylamine in rice wine samples. Fluorescence probe 2,6-dimethyl-4-quinolinecarboxylic acid N-hydroxysuccinimide ester was applied for derivatization of biogenic amines. Acetonitrile and 1-octanol were used as disperser solvent and extraction solvent, respectively. Extraction conditions including the type of extraction solvent, the volume of extraction solvent, ultrasonication time and centrifuging time were optimized. After extraction and centrifuging, analyte was injected rapidly into high-performance liquid chromatography and then detected with fluorescence. The calibration graph of the proposed method was linear in the range of 5–500 μg mL−1 (octopamine and tyramine) and 0.025–2.5 μg mL−1 (phenethylamine). The relative standard deviations were 2.4–3.2% (n = 6) and the limits of detection were in the range of 0.02–5 ng mL−1. The method was applied to analyze the rice wine samples and spiked recoveries in the range of 95.42–104.56% were obtained. The results showed that ultrasound-assisted dispersive liquid–liquid microextraction was a very simple, rapid, sensitive and efficient analytical method for the determination of trace amount of biogenic amines.  相似文献   

20.
A new solvent-free analytical procedure based on headspace solid-phase microextraction (SPME) coupled to gas chromatography employing an electron capture detector (GC/ECD) or alternatively a mass spectrometric detector (GC/MSD) has been developed for the determination of phthalic acid esters (dimethyl-[DMP], diethyl-[DEP], di-n-butyl-[DnBP], butylbenzyl-[BBP], di-2-ethylhexyl-[DEHP] and di-n-octyl [DnOP] phthalate) in vegetable oils. Four different fiber coatings were evaluated, among them polydimethylsiloxane with a thickness of 100 μm appeared to be the best choice for allowing extraction of the whole group of analytes. Various solvents were tested as sample matrix modification agents with the aim to facilitate the transfer of esters with low vapour pressure (DEHP and DnOP) from oil matrix into the headspace. The addition of methanol resulted in optimal set-up applicable for all phthalate esters. Temperature control and the way of sample stirring were recognized as critical points of the whole procedure. Primarily, because shaking rather than stirring of the sample is carried out using a CombiPal multipurpose sampler, the automation of the SPME method employing this instrument was found to be not fully suitable for efficient stripping of phthalates from the oil matrix into the sample headspace. Nevertheless, the optimized manual SPME method, encompassing GC/ECD or GC/MSD for the separation and detection of target analytes, offers a unique solution and showed acceptable performance characteristics: linear response in the range of 0.5-2 mg kg−1 and repeatability expressed as R.S.D. between 14 and 23% at the spiking level of 2 mg kg−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号