首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The laser-induced optical fiber fluorimetry has been used for the first time to analyse the concentration of uranium(VI) in the kinetic studies on the extraction of uranium(VI) between 0.5 mol L H3PO4 solution and HDEHP-cyclohexane system with Lewis cell. The effects of stirring speed, temperature and concentration of uranium(VI) and HDEHP on the rate of extraction were examined. These data show that the extraction rate of uranium(VI) in this system is controlled by the chemical reaction process at the interface. The rate equations and the rate constants of the forward and reverse extractions were obtained. The mechanism of the extraction has been discussed.  相似文献   

2.
Batch and dynamic extractions of uranium(VI) in 10−3–10−2M concentrations in 3–4M nitric acid medium have been investigated using a commercially available phosphinic acid resin (Tulsion CH-96). The extraction of uranium(VI) has been studied as a function of time, batch factor (V/m), concentrations of nitric acid and uranium(VI) ion. Dual extraction mechanism unique to phosphinic acid resin has been established for the extraction of uranium(VI). Distribution coefficient (K d ) of uranium(VI) initially decreases with increasing concentration of nitric acid, reaches a minimum value at 1.3M, followed by increases in K d . A maximum K d value of ∼2000 ml/g was obtained at 5.0M nitric acid. Batch extraction data has been fitted into the linearized Langmuir adsorption isotherm. The performance of the resin under dynamic extraction conditions was assessed by following the breakthrough behavior of the system. Effect of flow rate, concentrations of nitric acid and uranium ion in the feed on the breakthrough behavior of the system was studied and the data was fitted using Thomas model.  相似文献   

3.
Polyethyleneglycol (PEG) and its derivatives of high molecular weight were found to be employed as useful extractants for the solvent extraction of uranium. The extraction behaviors of uranium and neptunium were investigated, particularly concerning the dependence of the extractibility of uranium(VI) on the molecular weight of PEG. A dominating species of the extracted uranium(VI) thiocyanate complexes was assumed to be NH4 UO2(SCN)3·(PEG). The extraction of protactinium was also preliminarily studied. The extraction of these actinides from an acidic thiocyanate solution increased in the order: uranium(VI)>protactinium(V)>neptunium(V).  相似文献   

4.
Extraction studies of uranium(VI) and molybdenum(VI) with organophosphoric, phosphinic acid and its thiosubstituted derivatives have been carried out from 0.1–1.0M HCl solutions. The extracted species are proposed to be UO2R2 and MoO2 CIR on the basis of slope analysis for uranium(VI) and molybdenum(VI), respectively. The extraction efficiencies of PC-88A, Cyanex 272, Cyanex 301 and Cyanex 302 in the extraction of molybdenum(VI) and uranium(VI) are compared. Synergistic effects have been studied with binary mixtures of extractants. Separation of molybdenum(VI) from uranium(VI) is feasible by Cyanex 301 from 1M HCl, the separation factor log being 2.3.  相似文献   

5.
Solvent extractions of thorium(IV) and uranium(VI) by a commercially available chelating extractant LIX-26 (an alkylated 8-hydroxyquinoline) or 8-hydroxyquinoline, benzoic or salicylic acid, dipentyl sulphoxide (DPSO) and their mixtures with butanol as modifier in benzene/methylisobutyl ketone (MIBK) as the diluent have been studied. Extraction of uranium(VI) by 10% LIX-26 and 10% butanol in benzene becomes quantitative at pH 5.0. The pH 0.5 values for the extraction of thorium(IV) and uranium(VI) are 4.95 and 3.35, respectively. Quantitative extraction of thorium(IV) by the mixture of 0.1 M oxine and 0.1 M salicylic acid in methylisobutyl ketone was observed at pH 5.0. The influence of concentration of various anions on the extraction of Th4+ by mixtures of LIX-26 and benzoic acid has been studied. Studies on extraction of thorium(IV) and uranium(VI) by mixtures of LIX-26 (HQ) and DPSO show that the extracted species are possibly of the type [ThQ2/DPSO/2/SCN/2] and [UO2Q2/DPSO/], respectively.  相似文献   

6.
The extraction of uranium(VI) from sulfuric acid medium with tri-octylphosphine oxide (TOPO) in n-heptane was studied. Accompanied with the increase in the concentration of H2SO4, the distribution coefficient of uranium(VI) increased in the region of dilute sulfuric acid. When the concentration of H2SO4 surpassed 3.5 mol·dm−3, the distribution coefficient of uranium(VI) was at maximum. This result was due to the competition extraction between uranium(VI) and H2SO4. From the data, the composition of extracted species and the equilibrium constant of extraction reaction have been evaluated, which were (TOPOH)2UO2(SO4)2 (TOPO) and 107.6±0.15, respectively.  相似文献   

7.
Summary The parameters affecting the formation of the microemulsion were investigated and the microemulsion region was determined. The extraction of uranium(VI) from HNO3 solution into a water in oil microemulsion was studied. The effects of the concentration of extractant (TRPO), the volume ratio of oil to water and the acidity of outer water phase on the extraction equilibrium of uranium(VI) are discussed and the appropriate conditions are obtained. The result showed the microemulsion has great efficiency for uranium(VI) extraction.  相似文献   

8.
The present scientific study on uranium(VI) solvent extraction and vanadium(V) separation from sulfate solutions using Alamine 336 as an extractant diluted in kerosene was established. The preliminary experiments indicating the uranium extraction process will follow the solvation as well as ion-exchange mechanisms. In the present acid region (0.1–1.0 mol dm−3 H2SO4) it showing the ion-exchange type mechanism. Time (1–120 min) and temperature (25–55 °C) not influencing the present extraction system. Other experimental parameters like loading capacity of Alamine 336, stripping of uranium from loaded organic phase, recycling of Alamine 336 and separation of uranium(VI)/vanadium(V) was studied.  相似文献   

9.
The extraction of uranium(VI) with bis(hexylsulfinyl)methane (BHxSM) from nitric acid aqueous solution has been investigated. It was found that the extraction increased with increasing nitric acid concentration up 8.5 mol/l and then decreased. Extraction distribution ratio also increased with the bis(hexylsulfinyl)methane concentration. The extraction species appear to be UO2(NO3)2 .2BHxSM. The influences of temperature, salting-out concentration and oxalate concentration on the extraction equilibrium were also investigated, and the enthalpy of the extraction reaction was obtained. The result shows that the reaction of uranium(VI) extraction with BHxSM is an exothermic one.  相似文献   

10.
Batch extraction of uranium(VI) from uranyl nitrate solutions using TiAP in ionic liquids ([BMIM]PF6 and [HMIM]PF6) is studied. Effects of acidity, TiAP concentration in ionic liquid and temperature on distribution coefficient are studied. Results show that distribution coefficient increases with an increase in acidity and reduces with an increase in the alkyl chain length of the cation of the ionic liquid. Extraction of uranium(VI) by TiAP-[HMIM]PF6 system is found to involve two molecules of the extractant per metal ion and extraction is found to change from being exothermic to endothermic as the percentage of the extractant is increased.  相似文献   

11.
The synergic extraction of uranium(VI) from nitric acid solution with petroleum sulfoxides (PSO) and tri-n-butyl phosphate (TBP) mixture has been studied. It has been found that maximum synergic extraction effect occurs if the molar ratio of PSO to TBP is two to three. The composition of the complex of synergic extraction is UO2(NO3)2·TBP·PSO. The formation constant of the complex isK PT=8.19. The effect of extractant concentration, nitric acid concentration, salting-out agent concentration and temperature on the extraction equilibrium of uranium(VI) was also studied.  相似文献   

12.
The synergistic extraction of uranium(VI) from aqueous nitric acid solution with mixtures of bis(hexylsulfinyl)ethane (BHxSE) and petroleum sulfoxides (PSO) in 1,1,2,2-tetrachloroethane was studied. It has been found that the maximum synergistic extraction effect occurs when the molar ratio of PSO to BHxSE is close to 1. The composition of the complex of synergistic extraction was estimated as UO2(NO3)2 .BHxSE.PSO. The formation constant of the complex was equal to KBP = 4.23±0.03. The effects of extractant, nitric acid, salting-out agent, and complex anion concentrations and temperature on the extraction equilibrium of uranium(VI) were also studied.  相似文献   

13.
The liquid-liquid extraction behavior of uranium(VI) from aqueous nitric acid with bis(octylsulfinyl)ethane (BOSE) in 1,1,2,2-tetrachloroethane has been studied over a wide range of conditions. The extracted species appears to be UO2(NO3)2·2BOSE. It was found that the extraction increases with increasing nitric acid concentration up to 7 mol/l and then decreased. Extraction also increases with increasing extractant concentration. The influence of temperature and salting-out agent concentration on the extraction equilibrium and stripping of uranium(VI) was also investigated and the enthalpy of the extraction reaction was obtained.  相似文献   

14.
A study on extraction of uranium(VI) from sulfuric acid media by the primary amine N1923 in chloroform is described. Extraction coefficients of uranium(VI) as a function of aqueous H2SO4 concentration, extractant concentration and temperature have been studied. From the data, the compositions of extracted species, equilibrium constants and enthalpies of extraction reaction have been evaluated. A new extraction mechanism of amine has been suggested, that is the formation of reversed micelle as a result of the aggregation of ammonium salt in the organic phase of the extraction. This assumption may be used for interpreting extraction data satisfactorily, which can not be explained by the slope analysis method.  相似文献   

15.
The equilibrium constants for coordination of methyl substituted pyridine N-oxides with plutonium(VI) thenoyl trifluoroacetonate in chloroform (Ks) follow an order similar to those of the analogous uranium(VI) complexes indicating steric hindrance to bonding in the case of ortho substituted pyridine N-oxides. The extraction constants (k) of Pu(VI) chelates with various β-diketones are found to be only marginally higher than the values for the corresponding uranium(VI) chelates which is in conformity with the close similarity of the ionic radii of PuO 2 2+ and UO 2 2+ .  相似文献   

16.
Summary The synergistic extraction of uranium(VI) from aqueous nitric acid solution with a mixture of tri-n-butyl phosphate (TBP) and i-butyldodecylsulfoxide (BDSO) in toluene was investigated. The effects of the concentrations of extractant, nitric acid, sodium nitrate and sodium oxalate on the distribution ratios of uranium(VI) have been studied. The values of enthalpy change for the extraction reactions with BDSO, TBP and a mixture of TBP and BDSO in toluene were -23.2±0.8 kJ/mol, -29.2±1.4 kJ/mol and -30.6±0.6 kJ/mol, respectively. It has been found that the maximum synergistic extraction effect occurs when the molar ratio of TBP to BDSO is close to 1. The composition of the complex of the synergistic extraction is UO2(NO3)2 . BDSO . TBP.  相似文献   

17.
Uranium(VI) was removed from aqueous solutions using carbon coated Fe3O4 nanoparticles (Fe3O4@C). Batch experiments were conducted to study the effects of initial pH, shaking time and temperature on uranium sorption efficiency. It was found that the maximum adsorption capacity of the Fe3O4@C toward uranium(VI) was ∼120.20 mg g−1 when the initial uranium(VI) concentration was 100 mg L−1, displaying a high efficiency for the removal of uranium(VI) ions. Kinetics of the uranium(VI) removal is found to follow pseudo-second-order rate equation. In addition, the uranium(VI)-loaded Fe3O4@C nanoparticles can be recovered easily from aqueous solution by magnetic separation and regenerated by acid treatment. Present study suggested that magnetic Fe3O4@C composite particles can be used as an effective and recyclable adsorbent for the removal of uranium(VI) from aqueous solutions.  相似文献   

18.
The extraction behavior of uranium (VI) from chloride medium with 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (PC-88A) in dodecane has been investigated under wide range of conditions. Attempts have been made to establish the extraction mechanism of uranium(VI) with PC-88A. Treatment of the distribution data by slope analysis technique showed the formation of a monomeric complex of the nature [UO2(A2H)2]. Formation of this species was also confirmed by non-linear least square regression of the distribution data to the mathematical expression correlating percentage extraction and acidity. In this investigation attempts have also been made to develop a mathematical model for the system (UO2Cl2-HCl-H2O-PC-88A-dodecane) using experimental data on the distribution of uranium against initial aqueous acidity at different initial metal concentration. The mathematical model D = 37.547±0.223/C i 1/2×[H i ]2 can be used to predict the concentration of uranium in organic as well as in aqueous phases at any initial concentration of uranium [C i ] and initial hydrogen ion concentration [H i ]. The extraction constant (K ex ) has been calculated.  相似文献   

19.
The recovery of uranium(VI) from chloride solution using a liquid emulsion membrane (LEM) technique was studied. The emulsion is constituted by the quaternary salt of benzyloctadecyldimethyl ammonium chloride (BODMAC, R4NCl) as a carrier, kerosene as organic diluent, Span 80 as emulsifying agent and 0.5 mol/l Na2CO3 as stripping phase. The important variables affecting the LEM permeation process such as the concentrations of extractant, internal strip phase, types of organic diluent, and the presence of magnesium chloride or magnesium sulfate were investigated. It was found that, at a given condition, the maximum extraction rate of uranium(VI) reached 80%. The emulsion was stable at low pH in the presence of certain amounts of electrolytes such as NaCl and MgCl2.  相似文献   

20.
Studies have shown that plots of the log of the distribution ratio versus pH for the distribution of uranium(VI) between non-plasticized and TBP-plasticized dibenzoylmethane-loaded polyurethane foams and dilute aqueous uranium(VI) solutions have a limiting slope of 0.6 at equilibrium pH values 4 and reach a maximum distribution constant at about pH 6.0. The results indicate that the extracted complex is a simple chelate, UO2Me2, where HMe denotes dibenzoylmethane. Plasticization of the foam with TBP has been found to significantly enhance the rate of extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号